論文の概要: Robust Federated Learning with Attack-Adaptive Aggregation
- arxiv url: http://arxiv.org/abs/2102.05257v1
- Date: Wed, 10 Feb 2021 04:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 00:38:16.222183
- Title: Robust Federated Learning with Attack-Adaptive Aggregation
- Title(参考訳): 攻撃適応アグリゲーションを用いたロバスト連合学習
- Authors: Ching Pui Wan, Qifeng Chen
- Abstract要約: フェデレート学習は、モデル中毒やバックドア攻撃など、様々な攻撃に対して脆弱である。
本研究では,ロバスト学習のためのアタック・アダプティブ・アグリゲーション戦略を提案する。
- 参考スコア(独自算出の注目度): 45.60981228410952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning is vulnerable to various attacks, such as model poisoning
and backdoor attacks, even if some existing defense strategies are used. To
address this challenge, we propose an attack-adaptive aggregation strategy to
defend against various attacks for robust federated learning. The proposed
approach is based on training a neural network with an attention mechanism that
learns the vulnerability of federated learning models from a set of plausible
attacks. To the best of our knowledge, our aggregation strategy is the first
one that can be adapted to defend against various attacks in a data-driven
fashion. Our approach has achieved competitive performance in defending model
poisoning and backdoor attacks in federated learning tasks on image and text
datasets.
- Abstract(参考訳): フェデレーション学習は、既存の防衛戦略が使用されている場合でも、モデル中毒やバックドア攻撃など、さまざまな攻撃に対して脆弱です。
この課題に対処するため,我々は,強固な連合学習に対する様々な攻撃から防御するための攻撃適応集約戦略を提案する。
提案されたアプローチは、考えられる一連の攻撃から連合学習モデルの脆弱性を学習する注意メカニズムを備えたニューラルネットワークを訓練することに基づいている。
私たちの知る限りでは、私たちの集約戦略は、データ駆動の方法でさまざまな攻撃から防御するために適応できる最初の戦略です。
画像およびテキストデータセットにおける連関学習タスクにおけるモデル中毒およびバックドア攻撃の防御において,我々のアプローチは競争的性能を達成した。
関連論文リスト
- GenFighter: A Generative and Evolutive Textual Attack Removal [6.044610337297754]
自然言語処理(NLP)におけるTransformerモデルのような、ディープニューラルネットワーク(DNN)に対するアドリラルアタックは大きな課題となる。
本稿では,訓練分類分布の学習と推論によって敵の堅牢性を高める新しい防衛戦略であるGenFighterを紹介する。
我々は、GenFighterが攻撃および攻撃成功率の指標の下で、最先端の防御能力より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-17T16:32:13Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
標的外攻撃による敵の訓練は 最も認知されている方法の1つです
自然に不均衡なクラス間のセマンティックな類似性により、これらのハードクラスのペアが互いに仮想的なターゲットになる。
モデル最適化における重み付きハードクラスペアの損失について提案し、ハードクラスからの識別的特徴の学習を促す。
論文 参考訳(メタデータ) (2022-10-26T22:51:36Z) - Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization [17.756085566366167]
本研究では,ディープラーニングモデルを対象とした8つの敵攻撃に抵抗する特徴ランダム化に基づく手法を提案する。
本手法は,標的ネットワークを確保でき,敵の攻撃伝達可能性に対して60%以上抵抗することができる。
論文 参考訳(メタデータ) (2022-09-11T20:14:12Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
LAS-ATと呼ばれる「学習可能な攻撃戦略」は、モデル堅牢性を改善するための攻撃戦略を自動生成することを学ぶ。
当社のフレームワークは,強靭性向上のためのトレーニングにAEを使用するターゲットネットワークと,AE生成を制御するための攻撃戦略を生成する戦略ネットワークで構成されている。
論文 参考訳(メタデータ) (2022-03-13T10:21:26Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Survey on Federated Learning Threats: concepts, taxonomy on attacks and
defences, experimental study and challenges [10.177219272933781]
フェデレーション・ラーニング(Federated Learning)は、人工知能におけるプライバシ保護要求の解決策として現れる機械学習パラダイムである。
機械学習として、フェデレートされた学習は、学習モデルの完全性とデータのプライバシに対する敵対的な攻撃によって、ローカルおよびグローバルな学習に取り組むための分散アプローチによって脅かされる。
論文 参考訳(メタデータ) (2022-01-20T12:23:03Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。