論文の概要: Dream-Box: Object-wise Outlier Generation for Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2504.18746v1
- Date: Fri, 25 Apr 2025 23:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.969301
- Title: Dream-Box: Object-wise Outlier Generation for Out-of-Distribution Detection
- Title(参考訳): Dream-Box: アウト・オブ・ディストリビューション検出のためのオブジェクトワイズ・アウトリー生成
- Authors: Brian K. S. Isaac-Medina, Toby P. Breckon,
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は近年大きな注目を集めている課題である。
最近の研究は、合成外圧器を発生させ、それを使って外圧検出器を訓練することに重点を置いている。
我々は,OOD検出のための画素空間におけるオブジェクトワイド・アウトリー生成のリンクを提供するDream-Boxを紹介する。
- 参考スコア(独自算出の注目度): 15.806236012151968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have demonstrated great generalization capabilities for tasks whose training and test sets are drawn from the same distribution. Nevertheless, out-of-distribution (OOD) detection remains a challenging task that has received significant attention in recent years. Specifically, OOD detection refers to the detection of instances that do not belong to the training distribution, while still having good performance on the in-distribution task (e.g., classification or object detection). Recent work has focused on generating synthetic outliers and using them to train an outlier detector, generally achieving improved OOD detection than traditional OOD methods. In this regard, outliers can be generated either in feature or pixel space. Feature space driven methods have shown strong performance on both the classification and object detection tasks, at the expense that the visualization of training outliers remains unknown, making further analysis on OOD failure modes challenging. On the other hand, pixel space outlier generation techniques enabled by diffusion models have been used for image classification using, providing improved OOD detection performance and outlier visualization, although their adaption to the object detection task is as yet unexplored. We therefore introduce Dream-Box, a method that provides a link to object-wise outlier generation in the pixel space for OOD detection. Specifically, we use diffusion models to generate object-wise outliers that are used to train an object detector for an in-distribution task and OOD detection. Our method achieves comparable performance to previous traditional methods while being the first technique to provide concrete visualization of generated OOD objects.
- Abstract(参考訳): 深層ニューラルネットワークは、トレーニングとテストセットが同じ分布から引き出されるタスクに対して、非常に一般化された機能を示している。
しかし,近年注目されているOOD(Out-of-distriion)検出は依然として困難な課題である。
具体的には、OOD検出は、トレーニング分布に属さないインスタンスを検知するが、非配布タスク(例えば、分類やオブジェクト検出)ではパフォーマンスが良好である。
最近の研究は、合成外周波の生成とそれを用いて外周波検出器を訓練することに集中しており、一般的に従来のOOD法よりも優れたOOD検出を実現している。
この点において、外周は特徴空間または画素空間で生成される。
特徴空間駆動方式は,トレーニングアウトレーヤの可視化が未知であるため,分類タスクとオブジェクト検出タスクの両方で高い性能を示し,OOD障害モードのさらなる解析を困難にしている。
一方、拡散モデルにより実現された画素空間外乱生成技術は画像分類に使われ、OOD検出性能が向上し、オブジェクト検出タスクへの適応性はまだ未検討である。
そこで我々は,OOD検出のための画素空間におけるオブジェクトワイド・アウトリー生成のリンクを提供するDream-Boxを紹介した。
具体的には,拡散モデルを用いてオブジェクト検出器をトレーニングし,OOD検出を行う。
提案手法は,OODオブジェクトの具体的な可視化を行う最初の手法でありながら,従来の手法に匹敵する性能を実現する。
関連論文リスト
- Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
拡散モデルの生成能力とCLIPの強力な特徴抽出能力を活用する新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:55:25Z) - Skeleton-OOD: An End-to-End Skeleton-Based Model for Robust Out-of-Distribution Human Action Detection [17.85872085904999]
そこで我々はSkeleton-OODと呼ばれる新しい骨格モデルを提案する。
Skeleton-OODは、ID認識の精度を確保しつつ、OODタスクの有効性を向上させる。
本研究は,骨格型行動認識タスクの文脈における従来のOOD検出技術の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-05-31T05:49:37Z) - A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? [49.88894124047644]
我々は、最先端のOOD検出方法20について詳しく検討する。
不正に分類されたIDサンプルとOODサンプルの分離が不十分であることを示す。
論文 参考訳(メタデータ) (2024-04-02T09:40:22Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
物体検出装置(NAPTRON)における分布外サンプル検出のためのニューロン活性化PaTteRnsを導入する。
提案手法は,ID(In-distribution)のパフォーマンスに影響を与えることなく,最先端の手法よりも優れている。
OODオブジェクト検出のための最大のオープンソースベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-31T06:41:26Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOODは、オブジェクト検出領域の概念を利用して、マルチラベル分類タスクでOOD検出を行う方法である。
提案手法を最先端のOOD検出手法と比較し,OODベンチマークデータセットの総合的なスイートにおいて,YolOODがこれらの手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-12-05T07:52:08Z) - Out-of-Distribution Detection for LiDAR-based 3D Object Detection [8.33476679218773]
3Dオブジェクト検出は、自動走行の重要な部分である。
ディープモデルは、高い信頼度スコアをアウト・オブ・ディストリビューション(OOD)入力に割り当てたことで知られる。
本稿では,LiDARを用いた3Dオブジェクト検出のためのOOD入力の検出に焦点をあてる。
論文 参考訳(メタデータ) (2022-09-28T21:39:25Z) - Identifying Out-of-Distribution Samples in Real-Time for Safety-Critical
2D Object Detection with Margin Entropy Loss [0.0]
本稿では,2次元物体検出におけるOOD検出の限界エントロピー(ME)損失を利用したアプローチを提案する。
ME損失をトレーニングしたCNNは、標準信頼度スコアを用いてOOD検出を著しく上回る。
論文 参考訳(メタデータ) (2022-09-01T11:14:57Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。