Performance of Machine Learning Classifiers for Anomaly Detection in Cyber Security Applications
- URL: http://arxiv.org/abs/2504.18771v1
- Date: Sat, 26 Apr 2025 02:43:27 GMT
- Title: Performance of Machine Learning Classifiers for Anomaly Detection in Cyber Security Applications
- Authors: Markus Haug, Gissel Velarde,
- Abstract summary: This work empirically evaluates machine learning models on two imbalanced public datasets.<n>Models tested include eXtreme Gradient Boosting (XGB) and Multi Layer Perceptron (MLP)<n>IterativeImputer results are comparable to mean and median, but not recommended for large datasets due to increased complexity and execution time.
- Score: 0.1601392577755919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work empirically evaluates machine learning models on two imbalanced public datasets (KDDCUP99 and Credit Card Fraud 2013). The method includes data preparation, model training, and evaluation, using an 80/20 (train/test) split. Models tested include eXtreme Gradient Boosting (XGB), Multi Layer Perceptron (MLP), Generative Adversarial Network (GAN), Variational Autoencoder (VAE), and Multiple-Objective Generative Adversarial Active Learning (MO-GAAL), with XGB and MLP further combined with Random-Over-Sampling (ROS) and Self-Paced-Ensemble (SPE). Evaluation involves 5-fold cross-validation and imputation techniques (mean, median, and IterativeImputer) with 10, 20, 30, and 50 % missing data. Findings show XGB and MLP outperform generative models. IterativeImputer results are comparable to mean and median, but not recommended for large datasets due to increased complexity and execution time. The code used is publicly available on GitHub (github.com/markushaug/acr-25).
Related papers
- CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training [63.07024608399447]
We propose an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting.<n>We introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset.
arXiv Detail & Related papers (2025-04-17T17:58:13Z) - GHOST: Gaussian Hypothesis Open-Set Technique [10.426399605773083]
Evaluations of large-scale recognition methods typically focus on overall performance.<n> addressing fairness in Open-Set Recognition (OSR), we demonstrate that per-class performance can vary dramatically.<n>We apply Z-score normalization to logits to mitigate the impact of feature magnitudes that deviate from the model's expectations.
arXiv Detail & Related papers (2025-02-05T16:56:14Z) - Deep Unlearn: Benchmarking Machine Unlearning [7.450700594277741]
Machine unlearning (MU) aims to remove the influence of particular data points from the learnable parameters of a trained machine learning model.
This paper investigates 18 state-of-the-art MU methods across various benchmark datasets and models.
arXiv Detail & Related papers (2024-10-02T06:41:58Z) - Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models
in Federated Learning [0.22499166814992444]
This paper proposes a new distributed Markov Chain Monte Carlo (MCMC) inference method for DPMMs (DisCGS) using sufficient statistics.
Our approach uses the collapsed Gibbs sampler and is specifically designed to work on distributed data across independent and heterogeneous machines.
For instance, with a dataset of 100K data points, the centralized algorithm requires approximately 12 hours to complete 100 iterations while our approach achieves the same number of iterations in just 3 minutes.
arXiv Detail & Related papers (2023-12-18T13:16:18Z) - Learning to predict test effectiveness [1.4213973379473652]
This article offers a machine learning model to predict the extent to which the test could cover a class in terms of a new metric called Coverageability.
We offer a mathematical model to evaluate test effectiveness in terms of size and coverage of the test suite generated automatically for each class.
arXiv Detail & Related papers (2022-08-20T07:26:59Z) - Machine Learning Models in Stock Market Prediction [0.0]
The paper focuses on predicting the Nifty 50 Index by using 8 Supervised Machine Learning Models.
Experiments are based on historical data of Nifty 50 Index of Indian Stock Market from 22nd April, 1996 to 16th April, 2021.
arXiv Detail & Related papers (2022-02-06T10:33:42Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.