論文の概要: Evaluating AI-Driven Automated Map Digitization in QGIS
- arxiv url: http://arxiv.org/abs/2504.18777v1
- Date: Sat, 26 Apr 2025 03:09:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.98658
- Title: Evaluating AI-Driven Automated Map Digitization in QGIS
- Title(参考訳): QGISにおけるAI駆動自動マップディジタイゼーションの評価
- Authors: Diana Febrita,
- Abstract要約: Deepness(ディープネス、Deep Neural Remote Sensing)は、QGISアプリケーションのプラグインとして設計、統合されたAI駆動の高度なツールである。
本研究では,Google Earth画像からのAI生成デジタル化結果を解析し,OpenStreetMap(OSM)のデジタル化出力と比較し,性能評価を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Map digitization is an important process that converts maps into digital formats that can be used for further analysis. This process typically requires a deep human involvement because of the need for interpretation and decision-making when translating complex features. With the advancement of artificial intelligence, there is an alternative to conducting map digitization with the help of machine learning techniques. Deepness, or Deep Neural Remote Sensing, is an advanced AI-driven tool designed and integrated as a plugin in QGIS application. This research focuses on assessing the effectiveness of Deepness in automated digitization. This study analyses AI-generated digitization results from Google Earth imagery and compares them with digitized outputs from OpenStreetMap (OSM) to evaluate performance.
- Abstract(参考訳): 地図のデジタル化は、地図をさらなる分析に使用できるデジタル形式に変換する重要なプロセスである。
このプロセスは通常、複雑な特徴を翻訳する際に解釈と意思決定を必要とするため、深い人間の関与を必要とする。
人工知能の進歩により、機械学習技術の助けを借りて地図のデジタル化を行う代替手段が存在する。
Deepness(ディープネス、Deep Neural Remote Sensing)は、QGISアプリケーションのプラグインとして設計、統合されたAI駆動の高度なツールである。
本研究は、自動デジタル化におけるディープネスの有効性を評価することに焦点を当てる。
本研究では,Google Earth画像からのAI生成デジタル化結果を解析し,OpenStreetMap(OSM)のデジタル化出力と比較し,性能評価を行う。
関連論文リスト
- A Paradigm Shift in Mouza Map Vectorization: A Human-Machine Collaboration Approach [2.315458677488431]
現在の手動のデジタル化手法は時間と労力がかかる。
本研究では,デジタル化プロセスの効率化と,時間と人的資源の節約を目的とした半自動化手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T12:47:36Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Tinto: Multisensor Benchmark for 3D Hyperspectral Point Cloud
Segmentation in the Geosciences [9.899276249773425]
我々は,地質図作成のための深層学習手法の開発と検証を容易にするために設計された,デジタルアウトクロップのベンチマークデータセットであるTintoを提示する。
Tintoは,1)Corta Atalaya(Spain)の実際のデジタルアウトクロップモデル,2)スペクトル特性と地中構造データ,2)原データセットの潜在特徴を用いて地中構造からリアルなスペクトルデータを再構成する合成双生児からなる。
我々はこれらのデータセットを用いて、地質図の自動作成のための異なるディープラーニングアプローチの能力を探索した。
論文 参考訳(メタデータ) (2023-05-17T03:24:08Z) - Explainable GeoAI: Can saliency maps help interpret artificial
intelligence's learning process? An empirical study on natural feature
detection [4.52308938611108]
本稿では,GeoAIと深層学習モデルの推論行動の解釈において,一般的なサリエンシマップ生成手法とその長所と短所を比較した。
実験では、2つのGeoAI対応データセットを使用して、研究結果の一般化性を実証した。
論文 参考訳(メタデータ) (2023-03-16T21:37:29Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
協調環境における労働者とロボットの正確な3D位置を知ることは、いくつかの実際のアプリケーションを可能にする。
本研究では、深度デバイスと深度ニューラルネットワークに基づく非侵襲的なフレームワークを提案し、外部カメラからロボットの3次元ポーズを推定する。
論文 参考訳(メタデータ) (2022-07-06T08:52:12Z) - Feature Visualization within an Automated Design Assessment leveraging
Explainable Artificial Intelligence Methods [0.0]
3次元CADデータから駆動されるディープラーニングシステムによって主に活用される自動能力評価について紹介した。
現在の評価システムは、抽象的な特徴に関してCADデータを評価することができるが、システム決定の理由に関する幾何学的な指標は持っていない。
NeuroCADプロジェクト内では、ある抽象的特徴に関連する幾何学的特徴を特定するためにxAIメソッドが使用される。
論文 参考訳(メタデータ) (2022-01-28T13:31:42Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Automatic extraction of road intersection points from USGS historical
map series using deep convolutional neural networks [0.0]
道路交差点のデータは、異なる地理空間的応用と分析に利用されてきた。
我々は、ディープ畳み込みニューラルネットワークを領域ベースCNNと呼ばれるオブジェクト検出タスクに使用する標準パラダイムを採用した。
また、従来のコンピュータビジョンアルゴリズムと比較して、RCNNはより正確な抽出を提供する。
論文 参考訳(メタデータ) (2020-07-14T23:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。