論文の概要: A Langevin sampling algorithm inspired by the Adam optimizer
- arxiv url: http://arxiv.org/abs/2504.18911v1
- Date: Sat, 26 Apr 2025 12:57:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.041593
- Title: A Langevin sampling algorithm inspired by the Adam optimizer
- Title(参考訳): アダムオプティマイザにインスパイアされたランジェヴィンサンプリングアルゴリズム
- Authors: Benedict Leimkuhler, René Lohmann, Peter Whalley,
- Abstract要約: 本稿では,時間スケールのLangevinダイナミクスに基づく適応段階MCMCサンプリングのためのフレームワークを提案する。
我々のアルゴリズムは実装が簡単で、任意のオフザペグの固定ステップLangevinインテグレータと簡単に組み合わせることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework for adaptive-stepsize MCMC sampling based on time-rescaled Langevin dynamics, in which the stepsize variation is dynamically driven by an additional degree of freedom. Our approach augments the phase space by an additional variable which in turn defines a time reparameterization. The use of an auxiliary relaxation equation allows accumulation of a moving average of a local monitor function and provides for precise control of the timestep while circumventing the need to modify the drift term in the physical system. Our algorithm is straightforward to implement and can be readily combined with any off-the-peg fixed-stepsize Langevin integrator. As a particular example, we consider control of the stepsize by monitoring the norm of the log-posterior gradient, which takes inspiration from the Adam optimizer, the stepsize being automatically reduced in regions of steep change of the log posterior and increased on plateaus, improving numerical stability and convergence speed. As in Adam, the stepsize variation depends on the recent history of the gradient norm, which enhances stability and improves accuracy compared to more immediate control approaches. We demonstrate the potential benefit of this method--both in accuracy and in stability--in numerical experiments including Neal's funnel and a Bayesian neural network for classification of MNIST data.
- Abstract(参考訳): 本稿では,時間再スケールしたLangevinダイナミクスに基づく適応段階MCMCサンプリングのためのフレームワークを提案する。
我々の手法は位相空間を、時間再パラメータ化を定義する追加変数で拡張する。
補助緩和方程式の使用により、局所モニタ関数の移動平均の蓄積が可能となり、物理系におけるドリフト項の変更を回避しつつ、タイムステップの正確な制御が可能となる。
我々のアルゴリズムは実装が簡単で、任意のオフザペグの固定ステップLangevinインテグレータと簡単に組み合わせることができる。
特に,Adamオプティマイザからインスピレーションを得た対数後勾配のノルムを監視することにより,段数制御を考慮し,対数後部の急激な変化の領域で自動的に減少し,台地で増加し,数値安定性と収束速度を向上させる。
アダムのように、段階的な変化は勾配ノルムの最近の歴史に依存し、安定性を高め、より直接的な制御アプローチと比較して精度を向上させる。
MNISTデータの分類のためのNealのファンネルとベイズニューラルネットワークを含む数値実験において、精度と安定性の両面で、この手法の潜在的な利点を実証する。
関連論文リスト
- Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
強化学習(Reinforcement Learning, RL)は、環境と対話するエージェントを作成することによって、シーケンシャルな意思決定問題に取り組む。
既存のアルゴリズムはしばしばこれらの問題を静的とみなし、期待される報酬を最大化するためにモデルパラメータの点推定に重点を置いている。
我々の研究は、カルマンパラダイムを活用して、Langevinized Kalman TemporalTDと呼ばれる新しい定量化およびサンプリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-03-19T22:18:19Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - On Controller Tuning with Time-Varying Bayesian Optimization [74.57758188038375]
制御対象とその変更に関する適切な事前知識を用いて、時間変化最適化(TVBO)を用いて、変更環境におけるコントローラのオンラインチューニングを行う。
本研究では,不確実性注入(UI)を用いたTVBO戦略を提案する。
我々のモデルはTVBOの最先端手法よりも優れており、後悔の軽減と不安定なパラメータ構成の低減を実現している。
論文 参考訳(メタデータ) (2022-07-22T14:54:13Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
勾配降下法(SGD)を訓練した深部ニューラルネットワークの限界ダイナミクスについて検討する。
これらのダイナミクスを駆動する重要な要素は、本来のトレーニング損失ではなく、位相空間の振動を引き起こす速度と確率電流を暗黙的に規則化する修正損失の組み合わせであることを示す。
論文 参考訳(メタデータ) (2021-07-19T20:18:57Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
ビッグデータ統計学の学習のための適応重み付き勾配ランゲヴィン力学(SGLD)を提案する。
提案アルゴリズムは、CIFAR100を含むベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-10-19T19:20:47Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束する。
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束可能であることを示す。
論文 参考訳(メタデータ) (2020-06-29T20:57:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。