論文の概要: Dynamic Fisher-weighted Model Merging via Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2504.18992v1
- Date: Sat, 26 Apr 2025 18:31:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.079529
- Title: Dynamic Fisher-weighted Model Merging via Bayesian Optimization
- Title(参考訳): ベイジアン最適化による動的漁業重み付けモデルマージ
- Authors: Sanwoo Lee, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, Yunfang Wu,
- Abstract要約: 既存のマージアプローチでは、一般的にパラメータをモデル的にスケーリングするか、パラメータの重要度をパラメータ的に統合する。
我々はこれらの戦略をより一般的な統合フレームワークに統合し、動的フィッシャー重み付け(DF-Merge)を導入する。
DF-Mergeは、異なるサイズと様々なタスクのモデルにおいて、強いベースラインを上回ります。
- 参考スコア(独自算出の注目度): 37.02810891820468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fine-tuning of pre-trained language models has resulted in the widespread availability of task-specific models. Model merging offers an efficient way to create multi-task models by combining these fine-tuned models at the parameter level, without the need for training data or joint training on multiple datasets. Existing merging approaches typically involve scaling the parameters model-wise or integrating parameter importance parameter-wise. Both approaches exhibit their own weaknesses, leading to a notable performance gap compared to multi-task fine-tuning. In this paper, we unify these seemingly distinct strategies into a more general merging framework, and introduce Dynamic Fisher-weighted Merging (DF-Merge). Specifically, candidate models are associated with a set of coefficients that linearly scale their fine-tuned parameters. Bayesian optimization is applied to dynamically adjust these coefficients, aiming to maximize overall performance on validation sets. Each iteration of this process integrates parameter importance based on the Fisher information conditioned by the coefficients. Experimental results show that DF-Merge outperforms strong baselines across models of different sizes and a variety of tasks. Our analysis shows that the effectiveness of DF-Merge arises from the unified view of merging and that near-optimal performance is achievable in a few iterations, even with minimal validation data.
- Abstract(参考訳): 事前訓練された言語モデルの微調整により、タスク固有のモデルが広く利用できるようになった。
モデルマージは、複数のデータセットでトレーニングデータや共同トレーニングを必要とせずに、パラメータレベルでこれらの微調整されたモデルを組み合わせることで、マルチタスクモデルを作成する効率的な方法を提供する。
既存のマージアプローチでは、一般的にパラメータをモデル的にスケーリングするか、パラメータの重要度をパラメータ的に統合する。
どちらのアプローチも独自の弱点を示しており、マルチタスクの微調整に比べてパフォーマンスの差が顕著である。
本稿では,これらの特異な戦略をより一般的なマージフレームワークに統合し,動的フィッシャー重み付け(DF-Merge)を導入する。
具体的には、候補モデルは、それらの微調整されたパラメータを線形にスケールする係数の集合に関連付けられている。
ベイズ最適化はこれらの係数を動的に調整するために適用され、検証セット全体の性能を最大化することを目的としている。
このプロセスの各イテレーションは、係数によって条件付けられたフィッシャー情報に基づいてパラメータの重要度を統合する。
実験結果から,DF-Mergeは異なるサイズと様々なタスクのモデルにおいて,強いベースラインを上回ります。
DF-Mergeの有効性はマージの統一的な視点から明らかであり、最小限の検証データであっても、数回のイテレーションでほぼ最適性能が達成可能であることを示す。
関連論文リスト
- Reinforced Model Merging [53.84354455400038]
本稿では,タスク統合に適した環境とエージェントを含むRMM(Reinforced Model Merging)という,革新的なフレームワークを提案する。
評価プロセス中にデータサブセットを利用することで、報酬フィードバックフェーズのボトルネックに対処し、RMMを最大100倍高速化する。
論文 参考訳(メタデータ) (2025-03-27T08:52:41Z) - Parameter Efficient Merging for Multimodal Large Language Models with Complementary Parameter Adaptation [17.39117429338763]
相補的パラメータ適応を用いたトレーニング不要なパラメータ効率的なマージ手法であるCoPA-Mergingを提案する。
多様なマルチモーダルタスクからなるベンチマークを構築し,本手法の卓越した性能と一般化性を証明する実験を行った。
論文 参考訳(メタデータ) (2025-02-24T13:52:05Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Non-Uniform Parameter-Wise Model Merging [17.989809995141044]
我々は新しいアプローチであるNon-uniformを導入する。
賢いモデルマージ(英: wise Model Merging、NP Merge)は、各モデルのコントリビューションを学習することでモデルをマージする手法である。
勾配ベースの最適化を使った最終モデルへのパラメータ。
提案手法の有効性を実証的に実証し, 過去の手法よりも優れていた各種アーキテクチャのモデルを複数設定でマージする手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-12-20T00:05:14Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Mergingは、効果的なモデルマージのために各パラメータの係数を調整する訓練不要の手法である。
PCB-Mergingは、複数のモダリティ、ドメイン、モデルサイズ、タスク数、微調整フォーム、および大きな言語モデルにわたる大幅なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2024-10-03T11:17:58Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - DPPA: Pruning Method for Large Language Model to Model Merging [39.13317231533299]
本稿では、複雑な微調整モデルを統合するという課題に対処するため、DPPA(Dynamic Pruning Partition Amplification)と呼ばれる2段階の手法を提案する。
提案手法は,ドメイン固有のパラメータの20%しか保持せず,他の手法に匹敵する性能を提供する。
提案手法では, プレニング後の性能が優れており, モデルマージにおける性能が20%近く向上した。
論文 参考訳(メタデータ) (2024-03-05T09:12:49Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
蒸留、圧縮、量子化といった手法は、高性能な大きなモデルを利用してより小さな性能のモデルを誘導するのに役立つ。
本稿では、単一トレーニングランが同時に、より大きなパフォーマンスモデルをトレーニングし、より小さなデプロイメントモデルを導出できるという仮説を考察する。
論文 参考訳(メタデータ) (2024-02-07T17:07:41Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデルの深さを増大させることで、限られたパラメータを持つモデルの性能を向上させることができる。
このアプローチの成功は, モデル複雑性の増加により, ごく一部に過ぎず, 収束性の向上に大きく寄与することを示す。
8つの機械翻訳タスクの実験結果から,パラメータ共有モデルのモデル複雑性を半分に抑えて,我々のモデルが競合性能を達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T10:48:59Z) - TIES-Merging: Resolving Interference When Merging Models [95.59265307318752]
転送学習は、ダウンストリーム性能の改善、収束の高速化、サンプル効率の向上など、大きな利点をもたらす可能性がある。
モデルマージは、追加のトレーニングを行うことなく、複数のタスク固有のモデルを単一のモデルに組み合わせるソリューションとして登場した。
既存のマージ手法は、しばしば異なるモデルのパラメータ間の干渉を無視し、複数のモデルのマージ時に大きなパフォーマンス低下を引き起こす。
本稿では,モデル統合における新たな3つのステップとして,微調整時に少量だけ変化したパラメータをリセットし,符号衝突を解消し,最終的な一致した符号に一致したパラメータのみをマージするTIES-Mergingを提案する。
論文 参考訳(メタデータ) (2023-06-02T17:31:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。