Sparks: Multi-Agent Artificial Intelligence Model Discovers Protein Design Principles
- URL: http://arxiv.org/abs/2504.19017v1
- Date: Sat, 26 Apr 2025 20:43:28 GMT
- Title: Sparks: Multi-Agent Artificial Intelligence Model Discovers Protein Design Principles
- Authors: Alireza Ghafarollahi, Markus J. Buehler,
- Abstract summary: We present Sparks, a multi-modal multi-agent AI model that executes the entire discovery cycle.<n>Sparks can independently conduct rigorous scientific inquiry and identify previously unknown scientific principles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in artificial intelligence (AI) promise autonomous discovery, yet most systems still resurface knowledge latent in their training data. We present Sparks, a multi-modal multi-agent AI model that executes the entire discovery cycle that includes hypothesis generation, experiment design and iterative refinement to develop generalizable principles and a report without human intervention. Applied to protein science, Sparks uncovered two previously unknown phenomena: (i) a length-dependent mechanical crossover whereby beta-sheet-biased peptides surpass alpha-helical ones in unfolding force beyond ~80 residues, establishing a new design principle for peptide mechanics; and (ii) a chain-length/secondary-structure stability map revealing unexpectedly robust beta-sheet-rich architectures and a "frustration zone" of high variance in mixed alpha/beta folds. These findings emerged from fully self-directed reasoning cycles that combined generative sequence design, high-accuracy structure prediction and physics-aware property models, with paired generation-and-reflection agents enforcing self-correction and reproducibility. The key result is that Sparks can independently conduct rigorous scientific inquiry and identify previously unknown scientific principles.
Related papers
- Bayes-Entropy Collaborative Driven Agents for Research Hypotheses Generation and Optimization [4.469102316542763]
This paper proposes a multi-agent collaborative framework called HypoAgents.<n>It generates hypotheses through diversity sampling and establishes prior beliefs.<n>It then employs etrieval-augmented generation (RAG) to gather external literature evidence.<n>It identifies high-uncertainty hypotheses using information entropy $H = - sum p_ilog p_i$ and actively refines them.
arXiv Detail & Related papers (2025-08-03T13:05:32Z) - Integrating Dynamical Systems Learning with Foundational Models: A Meta-Evolutionary AI Framework for Clinical Trials [0.0]
NetraAI is a system-based framework engineered for stability and interpretability on small clinical trial datasets.<n>We formalize NetraAI's foundations, combining contraction mappings, information geometry, and evolutionary algorithms to identify predictive patient cohorts.<n>By prioritizing reliable, explainable knowledge, NetraAI offers a new generation of adaptive, self-reflective AI to accelerate clinical discovery.
arXiv Detail & Related papers (2025-05-25T03:34:33Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.<n>We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.<n>We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - A Model-Centric Review of Deep Learning for Protein Design [0.0]
Deep learning has transformed protein design, enabling accurate structure prediction, sequence optimization, and de novo protein generation.<n>Generative models such as ProtGPT2, ProteinMPNN, and RFdiffusion have enabled sequence and backbone design beyond natural evolution-based limitations.<n>More recently, joint sequence-structure co-design models, including ESM3, have integrated both modalities into a unified framework, resulting in improved designability.
arXiv Detail & Related papers (2025-02-26T14:31:21Z) - Towards an AI co-scientist [48.11351101913404]
We introduce an AI co-scientist, a multi-agent system built on Gemini 2.0.<n>The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses.<n>The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method.
arXiv Detail & Related papers (2025-02-26T06:17:13Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
Computational protein science is dedicated to revealing knowledge and developing applications within the protein sequence-structure-function paradigm.
Recently, Language Models (pLMs) have emerged as a milestone in AI due to their unprecedented language processing & generalization capability.
arXiv Detail & Related papers (2025-01-17T16:21:18Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding.
We present SciAgents, an approach that leverages three core concepts.
The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties.
Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a swarm of intelligence' similar to biological systems.
arXiv Detail & Related papers (2024-09-09T12:25:10Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate
Folding Landscape and Protein Structure Prediction [28.630603355510324]
We present EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets.
By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in low-data regime.
arXiv Detail & Related papers (2022-08-20T10:23:17Z) - Machine Learning Enabled Discovery of Application Dependent Design
Principles for Two-dimensional Materials [1.1470070927586016]
We train an ensemble of models to predict thermodynamic, mechanical, and electronic properties.
We carry out a screening of nearly 45,000 structures for two largely disjoint applications.
We find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
arXiv Detail & Related papers (2020-03-19T23:13:50Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.