論文の概要: Generative Models for Fast Simulation of Cherenkov Detectors at the Electron-Ion Collider
- arxiv url: http://arxiv.org/abs/2504.19042v1
- Date: Sat, 26 Apr 2025 22:33:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.105116
- Title: Generative Models for Fast Simulation of Cherenkov Detectors at the Electron-Ion Collider
- Title(参考訳): 電子イオン衝突によるチェレンコフ検出器の高速シミュレーションのための生成モデル
- Authors: James Giroux, Michael Martinez, Cristiano Fanelli,
- Abstract要約: 我々は、内部反射型チェレンコフ光検出器(DIRC)検出のための、オープンでスタンドアロンな高速シミュレーションツールを提案する。
我々のフレームワークは、粒子識別(PID)タスクを高速化するために、一連の生成モデルを組み込んでいる。
この柔軟性は、新しいDL駆動PIDメソッドの開発とベンチマークをサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Deep Learning (DL) into experimental nuclear and particle physics has driven significant progress in simulation and reconstruction workflows. However, traditional simulation frameworks such as Geant4 remain computationally intensive, especially for Cherenkov detectors, where simulating optical photon transport through complex geometries and reflective surfaces introduces a major bottleneck. To address this, we present an open, standalone fast simulation tool for Detection of Internally Reflected Cherenkov Light (DIRC) detectors, with a focus on the High-Performance DIRC (hpDIRC) at the future Electron-Ion Collider (EIC). Our framework incorporates a suite of generative models tailored to accelerate particle identification (PID) tasks by offering a scalable, GPU-accelerated alternative to full Geant4-based simulations. Designed with accessibility in mind, our simulation package enables both DL researchers and physicists to efficiently generate high-fidelity large-scale datasets on demand, without relying on complex traditional simulation stacks. This flexibility supports the development and benchmarking of novel DL-driven PID methods. Moreover, this fast simulation pipeline represents a critical step toward enabling EIC-wide PID strategies that depend on virtually unlimited simulated samples, spanning the full acceptance of the hpDIRC.
- Abstract(参考訳): 実験核・粒子物理学への深層学習(DL)の統合はシミュレーションと再構築のワークフローに大きな進歩をもたらした。
しかし、Geant4のような伝統的なシミュレーションフレームワークは、特にチェレンコフ検出器では、複雑なジオメトリや反射面を通して光光子の輸送をシミュレートすることで、大きなボトルネックをもたらす。
そこで本研究では,内部反射型チェレンコフ光検出器(DIRC)検出のためのオープンでスタンドアロンな高速シミュレーションツールを提案し,将来のElectron-Ion Collider(EIC)における高性能DIRC(hpDIRC)に着目した。
我々のフレームワークは、完全なGeant4ベースのシミュレーションに代えて、スケーラブルでGPUが加速する代替手段を提供することにより、粒子識別(PID)タスクを加速するための生成モデルスイートを組み込んでいる。
我々のシミュレーションパッケージはアクセシビリティを念頭に設計されており、複雑なシミュレーションスタックに頼ることなく、DL研究者と物理学者の両方がオンデマンドで高忠実な大規模データセットを効率的に生成することができる。
この柔軟性は、新しいDL駆動PIDメソッドの開発とベンチマークをサポートする。
さらに、この高速シミュレーションパイプラインは、hpDIRCの完全受け入れにまたがる、ほぼ無限のシミュレーションサンプルに依存する、EIC全体のPID戦略を実現するための重要なステップである。
関連論文リスト
- GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体を表すCenter of Mass System (CMS)として扱う。
さらに、ガウスシムは質量や運動量保存のような明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
この論文は、ベルIIの実験でPixel Vertex Detector (PXD)のこの課題を克服することを目的としている。
本研究は、粒子物理学における超高粒度検出器シミュレーションに深部生成モデルを用いた結果について初めて紹介する。
論文 参考訳(メタデータ) (2024-03-05T23:12:47Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Reduced Simulations for High-Energy Physics, a Middle Ground for
Data-Driven Physics Research [0.0]
サブ原子粒子軌道再構成は高エネルギー物理実験において重要な課題である。
我々は,複雑性低減型検出器モデルとしてREDVID(REDuced VIrtual Detector)と粒子衝突イベントシミュレータコンボを提供する。
論文 参考訳(メタデータ) (2023-08-30T12:50:45Z) - Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss [0.0]
LHCb実験における検出器応答と再構成アルゴリズムの両方をパラメータ化するシミュレーション生成を高速化するフレームワークであるLamarrについて論じる。
複数のアルゴリズムと戦略を駆使した深部生成モデルを用いて、LHCb検出器の単一成分の高レベル応答を効果的にパラメータ化する。
論文 参考訳(メタデータ) (2023-03-20T20:18:04Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
時間依存nppシミュレーションデータをモデル化するために、教師付き学習方法でトランスフォーマと呼ばれる高度なテンポラルニューラルネットワークを使用する。
トランスはシーケンシャルデータの特性を学習し、テストデータセット上で約99%の分類精度で有望な性能が得られる。
論文 参考訳(メタデータ) (2021-04-09T14:26:25Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Simulating the Time Projection Chamber responses at the MPD detector
using Generative Adversarial Networks [0.0]
本研究では、NICA加速器複合体におけるMPD実験のTime Projection Chamberトラッカーのシミュレーションを高速化するための新しいアプローチを実証する。
本手法は,任意の対象の集団分布を暗黙的に非パラメトリックに推定する深層学習手法である,生成型アドレアルネットワークに基づいている。
提案モデルの品質を評価するために,mpdソフトウェアスタックに統合し,詳細なシミュレータと同様の高品質なイベントを生成することを実証する。
論文 参考訳(メタデータ) (2020-12-08T17:57:37Z) - Data Augmentation at the LHC through Analysis-specific Fast Simulation
with Deep Learning [4.666011151359189]
本稿では,大規模解析用データセットを作成するために設計されたディープニューラルネットワークに基づく高速シミュレーションアプリケーションを提案する。
本稿では,大量のジェネレータレベルのイベントから始まる高速シミュレーションワークフローを提案する。
論文 参考訳(メタデータ) (2020-10-05T07:48:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。