論文の概要: Data Augmentation at the LHC through Analysis-specific Fast Simulation
with Deep Learning
- arxiv url: http://arxiv.org/abs/2010.01835v1
- Date: Mon, 5 Oct 2020 07:48:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:34:07.886929
- Title: Data Augmentation at the LHC through Analysis-specific Fast Simulation
with Deep Learning
- Title(参考訳): 深層学習を用いた解析特異的高速シミュレーションによるlhcにおけるデータ拡張
- Authors: Cheng Chen, Olmo Cerri, Thong Q. Nguyen, Jean-Roch Vlimant, Maurizio
Pierini
- Abstract要約: 本稿では,大規模解析用データセットを作成するために設計されたディープニューラルネットワークに基づく高速シミュレーションアプリケーションを提案する。
本稿では,大量のジェネレータレベルのイベントから始まる高速シミュレーションワークフローを提案する。
- 参考スコア(独自算出の注目度): 4.666011151359189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fast simulation application based on a Deep Neural Network,
designed to create large analysis-specific datasets. Taking as an example the
generation of W+jet events produced in sqrt(s)= 13 TeV proton-proton
collisions, we train a neural network to model detector resolution effects as a
transfer function acting on an analysis-specific set of relevant features,
computed at generation level, i.e., in absence of detector effects. Based on
this model, we propose a novel fast-simulation workflow that starts from a
large amount of generator-level events to deliver large analysis-specific
samples. The adoption of this approach would result in about an
order-of-magnitude reduction in computing and storage requirements for the
collision simulation workflow. This strategy could help the high energy physics
community to face the computing challenges of the future High-Luminosity LHC.
- Abstract(参考訳): 本稿では,大規模解析専用データセットを作成するために設計された深層ニューラルネットワークに基づく高速シミュレーションアプリケーションを提案する。
sqrt(s)=13TeV陽子-陽子衝突で発生するW+jet事象の生成例として、我々はニューラルネットワークをトレーニングし、検出効果のない世代レベルで計算される分析固有の特徴のセットに作用する伝達関数として検出器分解効果をモデル化する。
このモデルに基づき、大量のジェネレータレベルのイベントから始まり、大規模な分析特有のサンプルを提供する、新しい高速シミュレーションワークフローを提案する。
このアプローチの採用によって、衝突シミュレーションワークフローの計算とストレージ要件の桁違いな削減が実現されるでしょう。
この戦略は、高エネルギー物理学コミュニティが将来の高Luminosity LHCの計算課題に直面するのに役立つだろう。
関連論文リスト
- Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
この論文は、ベルIIの実験でPixel Vertex Detector (PXD)のこの課題を克服することを目的としている。
本研究は、粒子物理学における超高粒度検出器シミュレーションに深部生成モデルを用いた結果について初めて紹介する。
論文 参考訳(メタデータ) (2024-03-05T23:12:47Z) - Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss [0.0]
LHCb実験における検出器応答と再構成アルゴリズムの両方をパラメータ化するシミュレーション生成を高速化するフレームワークであるLamarrについて論じる。
複数のアルゴリズムと戦略を駆使した深部生成モデルを用いて、LHCb検出器の単一成分の高レベル応答を効果的にパラメータ化する。
論文 参考訳(メタデータ) (2023-03-20T20:18:04Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Towards Reliable Neural Generative Modeling of Detectors [0.45671221781968335]
本稿では,LHCb実験イベントのシミュレーションにおけるGAN(Generative Adversarial Network)の適用について論じる。
結果は、LHCbチェレンコフ検出器のGeant4シミュレーションに基づいている。
論文 参考訳(メタデータ) (2022-04-21T08:14:24Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
時間依存nppシミュレーションデータをモデル化するために、教師付き学習方法でトランスフォーマと呼ばれる高度なテンポラルニューラルネットワークを使用する。
トランスはシーケンシャルデータの特性を学習し、テストデータセット上で約99%の分類精度で有望な性能が得られる。
論文 参考訳(メタデータ) (2021-04-09T14:26:25Z) - MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks [0.0]
汎用粒子検出器では、粒子フローアルゴリズムを用いて事象の粒子レベルビューを再構築することができる。
並列化可能,スケーラブル,グラフニューラルネットワークに基づく,エンドツーエンドのトレーニング可能,マシン学習型粒子フローアルゴリズムを提案する。
陽子-陽子衝突で生成したトップクォーク-反クォーク対のモンテカルロデータセット上で,アルゴリズムの物理および計算性能について報告する。
論文 参考訳(メタデータ) (2021-01-21T12:47:54Z) - Simulating the Time Projection Chamber responses at the MPD detector
using Generative Adversarial Networks [0.0]
本研究では、NICA加速器複合体におけるMPD実験のTime Projection Chamberトラッカーのシミュレーションを高速化するための新しいアプローチを実証する。
本手法は,任意の対象の集団分布を暗黙的に非パラメトリックに推定する深層学習手法である,生成型アドレアルネットワークに基づいている。
提案モデルの品質を評価するために,mpdソフトウェアスタックに統合し,詳細なシミュレータと同様の高品質なイベントを生成することを実証する。
論文 参考訳(メタデータ) (2020-12-08T17:57:37Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。