論文の概要: Dual-Branch Residual Network for Cross-Domain Few-Shot Hyperspectral Image Classification with Refined Prototype
- arxiv url: http://arxiv.org/abs/2504.19074v1
- Date: Sun, 27 Apr 2025 02:04:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.119647
- Title: Dual-Branch Residual Network for Cross-Domain Few-Shot Hyperspectral Image Classification with Refined Prototype
- Title(参考訳): 改良型プロトタイプを用いた複分岐残差画像分類のための二重分岐残差ネットワーク
- Authors: Anyong Qin, Chaoqi Yuan, Qiang Li, Feng Yang, Tiecheng Song, Chenqiang Gao,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類に有効である。
それらの3D畳み込み構造は、数ショットのシナリオで高い計算コストと限定的な一般化をもたらす。
本文では, 並列分岐による空間的特徴とスペクトル的特徴を統合した2分岐残差ネットワークを提案する。
- 参考スコア(独自算出の注目度): 17.404026075350707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) are effective for hyperspectral image (HSI) classification, but their 3D convolutional structures introduce high computational costs and limited generalization in few-shot scenarios. Domain shifts caused by sensor differences and environmental variations further hinder cross-dataset adaptability. Metric-based few-shot learning (FSL) prototype networks mitigate this problem, yet their performance is sensitive to prototype quality, especially with limited samples. To overcome these challenges, a dual-branch residual network that integrates spatial and spectral features via parallel branches is proposed in this letter. Additionally, more robust refined prototypes are obtained through a regulation term. Furthermore, a kernel probability matching strategy aligns source and target domain features, alleviating domain shift. Experiments on four publicly available HSI datasets illustrate that the proposal achieves superior performance compared to other methods.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類に有効であるが、それらの3次元畳み込み構造は、数ショットシナリオで高い計算コストと限定的な一般化をもたらす。
センサの違いや環境の変化によって引き起こされるドメインシフトは、さらにデータセット間の適応性を阻害する。
メトリックベースの数ショット学習(FSL)プロトタイプネットワークはこの問題を軽減するが、その性能はプロトタイプの品質、特に限られたサンプルに敏感である。
これらの課題を克服するために、並列分岐による空間的特徴とスペクトル的特徴を統合する二重分岐残差ネットワークを提案する。
さらに、より堅牢な精製されたプロトタイプは規制項によって得られる。
さらに、カーネルの確率マッチング戦略は、ソースとターゲットのドメインの特徴を整合させ、ドメインシフトを緩和する。
4つの公開されたHSIデータセットの実験は、提案が他の方法よりも優れたパフォーマンスを達成することを示している。
関連論文リスト
- CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
現在の畳み込みニューラルネットワーク(CNN)は、ハイパースペクトルデータの局所的な特徴に焦点を当てている。
Transformerフレームワークは、ハイパースペクトル画像からグローバルな特徴を抽出する。
本研究は、CMTNet(Convolutional Meet Transformer Network)を紹介する。
論文 参考訳(メタデータ) (2024-06-20T07:56:51Z) - Two-Stage Adaptive Network for Semi-Supervised Cross-Domain Crater Detection under Varying Scenario Distributions [17.28368878719324]
クロスクレーター検出のための2段階適応ネットワーク(TAN)を提案する。
我々のネットワークはYOLOv5検出器上に構築されており、そこではクロスドメインの一般化能力を高めるために一連の戦略が採用されている。
ベンチマークデータセットによる実験結果から,提案するネットワークは,様々なシナリオ分布下でのクレーター検出の領域適応性を向上できることが示された。
論文 参考訳(メタデータ) (2023-12-11T07:16:49Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
本稿では,完全な参照 (FR) と非参照 (NR) IQA を行うネットワークを提案する。
まず、入力画像から多レベル特徴を抽出するためにエンコーダを用いる。
FRおよびNR入力のユニバーサルアダプタとして階層的注意(HA)モジュールを提案する。
エンコーダの浅い層と深い層との間の特徴相関を調べるために, セマンティック・ディストーション・アウェア (SDA) モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-14T11:03:04Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
ドメイン適応検出は、ターゲットドメイン上の検出器の一般化を改善することを目的としている。
近年のアプローチは、異なる粒度の特徴アライメントを通じて、逆学習を通じてドメイン適応を実現する。
ドメイン不変な特徴学習のための統合多重粒度アライメント(MGA)に基づく検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-01T08:38:07Z) - Dispensed Transformer Network for Unsupervised Domain Adaptation [21.256375606219073]
本稿では,新しい非教師付き領域適応 (UDA) 方式であるディスペンデントトランスフォーマーネットワーク (DTNet) について述べる。
提案するネットワークは,いくつかの最先端技術と比較して,最高の性能を実現している。
論文 参考訳(メタデータ) (2021-10-28T08:27:44Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
本稿では,ターゲットドメインレスドメイン適応畳み込みニューラルネットワーク(TDACNN)に基づくディープラーニングを提案する。
主な概念は、CNNがサンプルのドメイン固有の特徴を抽出するだけでなく、ソースドメインとターゲットドメインの両方の基礎となるドメイン不変の特徴も抽出することである。
異なる設定下でドリフトする2つのデータセットの実験は、いくつかの最先端手法と比較してTDACNNの優位性を示している。
論文 参考訳(メタデータ) (2021-10-14T16:30:17Z) - I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage
Object Detectors [64.93963042395976]
暗黙のInstance-Invariant Network(I3Net)は、ワンステージ検出器の適応に適しています。
i3netは、異なる層における深い特徴の自然な特徴を利用してインスタンス不変な特徴を暗黙的に学習する。
実験によると、I3Netはベンチマークデータセットの最先端のパフォーマンスを上回っている。
論文 参考訳(メタデータ) (2021-03-25T11:14:36Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
限定サンプルに基づくHSI分類のためのエンドツーエンドの3次元軽量畳み込みニューラルネットワーク(CNN)を提案する。
従来の3D-CNNモデルと比較して,提案した3D-LWNetはネットワーク構造が深く,パラメータが小さく,計算コストも低い。
本モデルでは,HSI分類の競合性能を,いくつかの最先端手法と比較した。
論文 参考訳(メタデータ) (2020-12-07T03:44:35Z) - Hyperspectral Image Classification with Spatial Consistence Using Fully
Convolutional Spatial Propagation Network [9.583523548244683]
深部畳み込みニューラルネットワーク(CNN)は、高スペクトル画像(HSI)を表現できる印象的な能力を示している
本稿では,HSI分類のための新しいエンドツーエンドの画素間完全畳み込み空間伝搬ネットワーク(FCSPN)を提案する。
FCSPNは3次元完全畳み込みネットワーク(3D-FCN)と畳み込み空間伝播ネットワーク(CSPN)からなる。
論文 参考訳(メタデータ) (2020-08-04T09:05:52Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。