論文の概要: DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification
- arxiv url: http://arxiv.org/abs/2304.09915v1
- Date: Wed, 19 Apr 2023 18:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 15:14:40.811738
- Title: DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification
- Title(参考訳): DCN-T:ハイパースペクトル画像分類のための変換器付きデュアルコンテキストネットワーク
- Authors: Di Wang, Jing Zhang, Bo Du, Liangpei Zhang and Dacheng Tao
- Abstract要約: 複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 109.09061514799413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) classification is challenging due to spatial
variability caused by complex imaging conditions. Prior methods suffer from
limited representation ability, as they train specially designed networks from
scratch on limited annotated data. We propose a tri-spectral image generation
pipeline that transforms HSI into high-quality tri-spectral images, enabling
the use of off-the-shelf ImageNet pretrained backbone networks for feature
extraction. Motivated by the observation that there are many homogeneous areas
with distinguished semantic and geometric properties in HSIs, which can be used
to extract useful contexts, we propose an end-to-end segmentation network named
DCN-T. It adopts transformers to effectively encode regional adaptation and
global aggregation spatial contexts within and between the homogeneous areas
discovered by similarity-based clustering. To fully exploit the rich spectrums
of the HSI, we adopt an ensemble approach where all segmentation results of the
tri-spectral images are integrated into the final prediction through a voting
scheme. Extensive experiments on three public benchmarks show that our proposed
method outperforms state-of-the-art methods for HSI classification.
- Abstract(参考訳): hyperspectral image (hsi) 分類は複雑な撮像条件によって引き起こされる空間変動のために困難である。
従来の手法では、特殊な設計のネットワークを制限されたデータからスクラッチからトレーニングするため、表現能力の制限に苦しむ。
本稿では,HSIを高品質な3スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
本研究は,HSIには意味的・幾何学的性質の異なる多くの均質な領域があり,有用コンテキストの抽出に利用することができることを考察し,DCN-Tというエンドツーエンドセグメンテーションネットワークを提案する。
類似性に基づくクラスタリングによって発見された同質領域内および同質領域間の局所的適応と大域的集合空間コンテキストを効果的にエンコードするトランスフォーマーを採用している。
hsiの豊富なスペクトルを十分に活用するために、三スペクトル画像の全てのセグメンテーション結果が投票方式によって最終予測に統合されたアンサンブルアプローチを採用する。
3つの公開ベンチマーク実験の結果,提案手法はHSI分類の最先端手法よりも優れていることがわかった。
関連論文リスト
- Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
ハイパースペクトル画像(HSI)クラスタリングは重要な課題だが難しい課題である。
まず3次元と2次元のハイブリッド畳み込みニューラルネットワークを用いてHSIの高次空間およびスペクトルの特徴を抽出する。
次に,超画素グラフの対比クラスタリングモデルを設計し,識別的超画素表現を学習する。
論文 参考訳(メタデータ) (2024-03-04T07:40:55Z) - Multiview Subspace Clustering of Hyperspectral Images based on Graph
Convolutional Networks [12.275530282665578]
本研究では、グラフ畳み込みネットワークに基づくハイスペクトル画像(HSI)のマルチビューサブスペースクラスタリングを提案する。
このモデルは、インディアンパインズ、パヴィア大学、ヒューストンを含む3つの人気のあるHSIデータセットで評価された。
合計で92.38%、93.43%、83.82%の精度を達成し、最先端のクラスタリング法を著しく上回った。
論文 参考訳(メタデータ) (2024-03-03T10:19:18Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
ハイパースペクトル画像(HSI)処理の1つの重要な課題は、スペクトル空間的特徴の抽出である。
M-GSP特徴抽出に基づくHSIセグメンテーションへのいくつかのアプローチを提案する。
HSI処理とスペクトル空間情報抽出におけるM-GSPの強度を実験的に検証した。
論文 参考訳(メタデータ) (2021-11-29T23:28:18Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
本稿では,リモートセンシング画像(RSI-Net)のセマンティックセグメンテーションのための2ストリームディープニューラルネットワークを提案する。
実験はVayhingen、Potsdam、Gaofen RSIデータセットで実施されている。
その結果,6つの最先端RSIセマンティックセグメンテーション法と比較して,総合的精度,F1スコア,カッパ係数において,RSI-Netの優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-19T15:57:20Z) - A Feature Fusion-Net Using Deep Spatial Context Encoder and
Nonstationary Joint Statistical Model for High Resolution SAR Image
Classification [10.152675581771113]
HR SAR画像に対して, エンドツーエンドの教師付き分類法を提案する。
より効果的な空間特徴を抽出するために,新しい深部空間コンテキストエンコーダネットワーク(DSCEN)を提案する。
統計の多様性を高めるため、非定常連成統計モデル(NS-JSM)が採用され、グローバルな統計特性を形成する。
論文 参考訳(メタデータ) (2021-05-11T06:20:14Z) - Spatial--spectral FFPNet: Attention-Based Pyramid Network for
Segmentation and Classification of Remote Sensing Images [12.320585790097415]
本研究では,リモートセンシングデータセットのセグメンテーションと分類のためのアテンションベースのピラミッドネットワークを開発する。
ISPRS Vaihingen と ISPRS Potsdam の高分解能データセットを用いて行った実験は、提案した重み空間FFPNetによる競合セグメンテーション精度を示す。
論文 参考訳(メタデータ) (2020-08-20T04:55:34Z) - Hyperspectral Image Classification with Spatial Consistence Using Fully
Convolutional Spatial Propagation Network [9.583523548244683]
深部畳み込みニューラルネットワーク(CNN)は、高スペクトル画像(HSI)を表現できる印象的な能力を示している
本稿では,HSI分類のための新しいエンドツーエンドの画素間完全畳み込み空間伝搬ネットワーク(FCSPN)を提案する。
FCSPNは3次元完全畳み込みネットワーク(3D-FCN)と畳み込み空間伝播ネットワーク(CSPN)からなる。
論文 参考訳(メタデータ) (2020-08-04T09:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。