PolyTouch: A Robust Multi-Modal Tactile Sensor for Contact-rich Manipulation Using Tactile-Diffusion Policies
- URL: http://arxiv.org/abs/2504.19341v1
- Date: Sun, 27 Apr 2025 19:50:31 GMT
- Title: PolyTouch: A Robust Multi-Modal Tactile Sensor for Contact-rich Manipulation Using Tactile-Diffusion Policies
- Authors: Jialiang Zhao, Naveen Kuppuswamy, Siyuan Feng, Benjamin Burchfiel, Edward Adelson,
- Abstract summary: PolyTouch is a novel robot finger that integrates camera-based tactile sensing, acoustic sensing, and peripheral visual sensing into a single design.<n>Experiments demonstrate a 20-fold increase in lifespan over commercial tactile sensors, with a design that is both easy to manufacture and scalable.
- Score: 4.6090500060386805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving robust dexterous manipulation in unstructured domestic environments remains a significant challenge in robotics. Even with state-of-the-art robot learning methods, haptic-oblivious control strategies (i.e. those relying only on external vision and/or proprioception) often fall short due to occlusions, visual complexities, and the need for precise contact interaction control. To address these limitations, we introduce PolyTouch, a novel robot finger that integrates camera-based tactile sensing, acoustic sensing, and peripheral visual sensing into a single design that is compact and durable. PolyTouch provides high-resolution tactile feedback across multiple temporal scales, which is essential for efficiently learning complex manipulation tasks. Experiments demonstrate an at least 20-fold increase in lifespan over commercial tactile sensors, with a design that is both easy to manufacture and scalable. We then use this multi-modal tactile feedback along with visuo-proprioceptive observations to synthesize a tactile-diffusion policy from human demonstrations; the resulting contact-aware control policy significantly outperforms haptic-oblivious policies in multiple contact-aware manipulation policies. This paper highlights how effectively integrating multi-modal contact sensing can hasten the development of effective contact-aware manipulation policies, paving the way for more reliable and versatile domestic robots. More information can be found at https://polytouch.alanz.info/
Related papers
- Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation [58.95799126311524]
Humans can accomplish contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces.<n>Existing visual imitation learning approaches rely on action chunking to model complex behaviors.<n>We introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality.
arXiv Detail & Related papers (2025-03-04T18:58:21Z) - Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
arXiv Detail & Related papers (2024-11-04T18:38:50Z) - Learning Precise, Contact-Rich Manipulation through Uncalibrated Tactile Skins [17.412763585521688]
We present the Visuo-Skin (ViSk) framework, a simple approach that uses a transformer-based policy and treats skin sensor data as additional tokens alongside visual information.
ViSk significantly outperforms both vision-only and optical tactile sensing based policies.
Further analysis reveals that combining tactile and visual modalities enhances policy performance and spatial generalization, achieving an average improvement of 27.5% across tasks.
arXiv Detail & Related papers (2024-10-22T17:59:49Z) - Binding Touch to Everything: Learning Unified Multimodal Tactile
Representations [29.76008953177392]
We introduce UniTouch, a unified model for vision-based touch sensors connected to multiple modalities.
We achieve this by aligning our UniTouch embeddings to pretrained image embeddings already associated with a variety of other modalities.
We further propose learnable sensor-specific tokens, allowing the model to learn from a set of heterogeneous tactile sensors.
arXiv Detail & Related papers (2024-01-31T18:59:57Z) - MimicTouch: Leveraging Multi-modal Human Tactile Demonstrations for Contact-rich Manipulation [8.738889129462013]
"MimicTouch" is a novel framework for learning policies directly from demonstrations provided by human users with their hands.<n>The key innovations are i) a human tactile data collection system which collects multi-modal tactile dataset for learning human's tactile-guided control strategy, and ii) an imitation learning-based framework for learning human's tactile-guided control strategy through such data.
arXiv Detail & Related papers (2023-10-25T18:34:06Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z) - DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile
Sensor with Application to In-Hand Manipulation [16.54834671357377]
General purpose in-hand manipulation remains one of the unsolved challenges of robotics.
We introduce DIGIT, an inexpensive, compact, and high-resolution tactile sensor geared towards in-hand manipulation.
arXiv Detail & Related papers (2020-05-29T17:07:54Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.