Binding Touch to Everything: Learning Unified Multimodal Tactile
Representations
- URL: http://arxiv.org/abs/2401.18084v1
- Date: Wed, 31 Jan 2024 18:59:57 GMT
- Title: Binding Touch to Everything: Learning Unified Multimodal Tactile
Representations
- Authors: Fengyu Yang, Chao Feng, Ziyang Chen, Hyoungseob Park, Daniel Wang,
Yiming Dou, Ziyao Zeng, Xien Chen, Rit Gangopadhyay, Andrew Owens, Alex Wong
- Abstract summary: We introduce UniTouch, a unified model for vision-based touch sensors connected to multiple modalities.
We achieve this by aligning our UniTouch embeddings to pretrained image embeddings already associated with a variety of other modalities.
We further propose learnable sensor-specific tokens, allowing the model to learn from a set of heterogeneous tactile sensors.
- Score: 29.76008953177392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to associate touch with other modalities has huge implications
for humans and computational systems. However, multimodal learning with touch
remains challenging due to the expensive data collection process and
non-standardized sensor outputs. We introduce UniTouch, a unified tactile model
for vision-based touch sensors connected to multiple modalities, including
vision, language, and sound. We achieve this by aligning our UniTouch
embeddings to pretrained image embeddings already associated with a variety of
other modalities. We further propose learnable sensor-specific tokens, allowing
the model to learn from a set of heterogeneous tactile sensors, all at the same
time. UniTouch is capable of conducting various touch sensing tasks in the
zero-shot setting, from robot grasping prediction to touch image question
answering. To the best of our knowledge, UniTouch is the first to demonstrate
such capabilities. Project page: https://cfeng16.github.io/UniTouch/
Related papers
- Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
arXiv Detail & Related papers (2024-11-04T18:38:50Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
We explore learning from human demonstrations using a bimanual system with multifingered hands and visuotactile data.
Our results mark a promising step forward in bimanual multifingered manipulation from visuotactile data.
arXiv Detail & Related papers (2024-04-25T17:59:41Z) - PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation [8.997347199266592]
Our goal is to equip robots with a similar capability, which we term ourmodel.
We frame this problem as the task of learning a low-dimensional visual-tactile embedding.
Using ReSkin, we collect and train PseudoTouch on a dataset comprising aligned tactile and visual data pairs.
We demonstrate the efficacy of PseudoTouch through its application to two downstream tasks: object recognition and grasp stability prediction.
arXiv Detail & Related papers (2024-03-22T10:51:31Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
We develop a conditional generative model that synthesizes both visual and tactile outputs from a single sketch.
We then introduce a pipeline to render high-quality visual and tactile outputs on an electroadhesion-based haptic device.
arXiv Detail & Related papers (2023-05-04T17:59:51Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Touch and Go: Learning from Human-Collected Vision and Touch [16.139106833276]
We propose a dataset with paired visual and tactile data called Touch and Go.
Human data collectors probe objects in natural environments using tactile sensors.
Our dataset spans a large number of "in the wild" objects and scenes.
arXiv Detail & Related papers (2022-11-22T18:59:32Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - PyTouch: A Machine Learning Library for Touch Processing [68.32055581488557]
We present PyTouch, the first machine learning library dedicated to the processing of touch sensing signals.
PyTouch is designed to be modular, easy-to-use and provides state-of-the-art touch processing capabilities as a service.
We evaluate PyTouch on real-world data from several tactile sensors on touch processing tasks such as touch detection, slip and object pose estimations.
arXiv Detail & Related papers (2021-05-26T18:55:18Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.