論文の概要: HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
- arxiv url: http://arxiv.org/abs/2504.19382v1
- Date: Sun, 27 Apr 2025 23:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.262639
- Title: HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
- Title(参考訳): HyperController: 強化学習ニューラルネットワークの高速かつ安定トレーニングのためのハイパーパラメータコントローラ
- Authors: Jonathan Gornet, Yiannis Kantaros, Bruno Sinopoli,
- Abstract要約: HyperControllerは、強化学習ニューラルネットワークのトレーニング中のハイパーパラメータ最適化のための計算効率のよいアルゴリズムである。
これは、ハイパーパラメータ最適化問題を未知の線形動的ガウスシステムとしてモデル化することで実現される。
5つのGymnasium環境のうち4つで、HyperControllerは他のアルゴリズムと比較して評価の最中央値の報酬を達成している。
- 参考スコア(独自算出の注目度): 6.697702130929693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Hyperparameter Controller (HyperController), a computationally efficient algorithm for hyperparameter optimization during training of reinforcement learning neural networks. HyperController optimizes hyperparameters quickly while also maintaining improvement of the reinforcement learning neural network, resulting in faster training and deployment. It achieves this by modeling the hyperparameter optimization problem as an unknown Linear Gaussian Dynamical System, which is a system with a state that linearly changes. It then learns an efficient representation of the hyperparameter objective function using the Kalman filter, which is the optimal one-step predictor for a Linear Gaussian Dynamical System. To demonstrate the performance of HyperController, it is applied as a hyperparameter optimizer during training of reinforcement learning neural networks on a variety of OpenAI Gymnasium environments. In four out of the five Gymnasium environments, HyperController achieves highest median reward during evaluation compared to other algorithms. The results exhibit the potential of HyperController for efficient and stable training of reinforcement learning neural networks.
- Abstract(参考訳): 我々は、強化学習ニューラルネットワークのトレーニング中に、ハイパーパラメータ最適化のための計算効率の良いアルゴリズムであるHyperparameter Controller(HyperController)を紹介する。
HyperControllerはハイパーパラメータを迅速に最適化し、強化学習ニューラルネットワークの改善も維持する。
ハイパーパラメータ最適化問題を線形変化状態を持つ未知の線形ガウス力学系としてモデル化することでこれを実現できる。
次に、線形ガウス力学系の最適1ステップ予測器であるカルマンフィルタを用いて、ハイパーパラメータ目的関数の効率的な表現を学習する。
HyperControllerの性能を示すために、様々なOpenAI体育館環境における強化学習ニューラルネットワークのトレーニングにおいて、ハイパーパラメータオプティマイザとして適用されている。
5つのGymnasium環境のうち4つで、HyperControllerは他のアルゴリズムと比較して評価の最中央値の報酬を達成している。
この結果は、強化学習ニューラルネットワークの効率的かつ安定したトレーニングのためのHyperControllerの可能性を示す。
関連論文リスト
- Efficient Hyperparameter Importance Assessment for CNNs [1.7778609937758323]
本稿では,畳み込みニューラルネットワーク(CNN)におけるハイパーパラメータの重み付けを,N-RReliefFというアルゴリズムを用いて定量化する。
我々は10の人気のある画像分類データセットから1万以上のCNNモデルをトレーニングし、広範囲にわたる研究を行う。
論文 参考訳(メタデータ) (2024-10-11T15:47:46Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence
Models [8.370770440898454]
より大きな言語モデルをトレーニングする膨大なコストは、チューニングを違法に高価にする可能性がある。
本稿では,勾配に基づくハイパーパラメータ最適化をシーケンシャル・ツー・シーケンス・タスクに初めて適用する。
ニューラルネットワーク翻訳と自然言語理解(NLU)の両タスクにおいて,強いベースラインに対する効率性と性能の向上を示す。
論文 参考訳(メタデータ) (2022-09-10T14:52:41Z) - Goal-Oriented Sensitivity Analysis of Hyperparameters in Deep Learning [0.0]
Hilbert-Schmidt Independence Criterion (HSIC) に基づく目標指向感度分析のハイパーパラメータ解析および最適化への応用について検討した。
MNISTやCifar、古典的な機械学習データセットに応用したHSICに基づく最適化アルゴリズムを導出し、科学的な機械学習に関心を持つ。
論文 参考訳(メタデータ) (2022-07-13T14:21:12Z) - Near-optimal control of dynamical systems with neural ordinary
differential equations [0.0]
ディープラーニングとニューラルネットワークに基づく最適化の最近の進歩は、高次元力学系を含む制御問題を解くのに役立つ方法の開発に寄与している。
まず、時間を通して切り詰められた非切り抜きのバックプロパゲーションが、実行時のパフォーマンスとニューラルネットワークが最適な制御関数を学習する能力にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-06-22T14:11:11Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNPは、ニューラルネットワーク近似をトレーニングすることで、プロジェクションメソッドをリアルタイムにインタラクティブに探索できるスケーラブルな方法である。
我々は3つのデータセット間でのHyperNPの性能を,性能と速度の観点から評価した。
論文 参考訳(メタデータ) (2021-06-25T17:28:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - HyperMorph: Amortized Hyperparameter Learning for Image Registration [8.13669868327082]
HyperMorphは、変形可能な画像登録のための学習ベースの戦略です。
既存の検索戦略よりもはるかに高速に複数のハイパーパラメータを最適化できることを示す。
論文 参考訳(メタデータ) (2021-01-04T15:39:16Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
本稿では、エンドツーエンドの効率とデータ付加訓練の効率を評価するための新しいベンチマークプロトコルを提案する。
評価プロトコルは, ランダム探索よりも, 人間のチューニング行動とよく一致していることを示すために, 人間の実験を行った。
次に,提案したベンチマークフレームワークをコンピュータビジョン,自然言語処理,強化学習,グラフマイニングなどのタスクに適用する。
論文 参考訳(メタデータ) (2020-10-19T21:46:39Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTARは、ディープニューラルネットワークのためのHPOをウォームスタートするタスク認識方式である。
生の画像から直接、データセット(タスク)表現とパフォーマンス予測器を学習する。
既存のメソッドと比較して、最高のパフォーマンスを達成するために、構成を50%少なく評価する。
論文 参考訳(メタデータ) (2020-05-21T08:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。