論文の概要: A Comparison-Relationship-Surrogate Evolutionary Algorithm for Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2504.19411v1
- Date: Mon, 28 Apr 2025 01:39:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.281163
- Title: A Comparison-Relationship-Surrogate Evolutionary Algorithm for Multi-Objective Optimization
- Title(参考訳): 多目的最適化のための相関・代理進化アルゴリズムの比較
- Authors: Christopher M. Pierce, Young-Kee Kim, Ivan Bazarov,
- Abstract要約: 我々は,新しい種類の代理モデル,比較関係-代理モデルによって駆動されるアルゴリズムを導入し,検証する。
この新しいアルゴリズムは、平均して、多くの中規模生物の客観的問題に対するより良い収束解を達成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evolutionary algorithms often struggle to find high-quality solutions to multi-objective optimization problems on a limited budget of function evaluations (here, a few hundred). A promising direction to improve the efficiency of these methods is to augment the objective functions with a data-driven surrogate model. These ``surrogate-assisted'' optimization algorithms can achieve better solutions than conventional algorithms for the same number of function evaluations on a wide variety of test problems. In this work, we continue to explore the area of surrogate-assisted multi-objective optimization by introducing and testing an algorithm driven by a new type of surrogate model: a comparison-relationship-surrogate model. This model predicts the truth values of the comparison operator evaluated on the objective functions for two candidate solutions. These predictions can be used to infer the domination relationships that power the non-dominated sorting mechanism used by many multi-objective genetic algorithms to select fit individuals. Several numerical experiments are performed on this algorithm using well-known test suites plus a real-world problem from the field of accelerator physics. Statistical analysis of the results demonstrates that the new algorithm can, on average, achieve better-converged solutions to many medium-scale, biobjective problems than existing state-of-the-art methods for a limited budget of function evaluations.
- Abstract(参考訳): 進化的アルゴリズムは、関数評価の限られた予算(数百)において、多目的最適化問題に対する高品質な解を見つけるのに苦労することが多い。
これらの手法の効率を改善するための有望な方向は、データ駆動サロゲートモデルで目的関数を拡張することである。
これらの `surrogate-assisted' 最適化アルゴリズムは、様々なテスト問題に対して同じ数の関数評価を行う従来のアルゴリズムよりも優れた解が得られる。
本研究では,新しい種類の代理モデル,比較関係-代理モデルによって駆動されるアルゴリズムを導入し,テストすることによって,代理支援多目的最適化の領域を探索し続けている。
このモデルは、2つの候補解に対する目的関数に基づいて評価された比較演算子の真理値を予測する。
これらの予測は、多くの多目的遺伝的アルゴリズムが適した個体を選択するために使用する非支配的な選別メカニズムを駆動する支配関係を推測するために用いられる。
このアルゴリズムでは、よく知られたテストスイートと、加速器物理学の分野における実世界の問題を用いて、いくつかの数値実験を行う。
結果の統計的分析により,関数評価の予算に制限のある既存の最先端手法よりも,多くの中規模バイオオブジェクト問題に対する収束解を平均して達成できることが示されている。
関連論文リスト
- Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Solving the Food-Energy-Water Nexus Problem via Intelligent Optimization Algorithms [46.48853432592689]
食料・エネルギー・水系は、互いに影響を及ぼす食料・エネルギー・水の間で複雑に結びついている。
それらは通常、膨大な数の決定変数と、最適化されるべき多くの矛盾する目標を含む。
本稿では、最先端のインテリジェントな最適化手法を用いて食品・エネルギー・水の最適化問題を解き、その性能を比較する。
論文 参考訳(メタデータ) (2024-04-10T06:19:19Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms [10.609857097723266]
自己適応が多目的進化アルゴリズムに与える影響について検討する。
単一目的最適化とハイパーボリュームに基づく突然変異率の適応は,GSEMOの収束を早めることができることを示す。
本稿では,単一目的の最適化を考慮し,各ソリューションの突然変異率を個別に調整する自己適応突然変異GSEMOを提案する。
論文 参考訳(メタデータ) (2023-03-08T14:26:46Z) - Multi-surrogate Assisted Efficient Global Optimization for Discrete
Problems [0.9127162004615265]
本稿では、離散的な問題を解くために、複数のシミュレーションベースの代理モデルの同時利用の可能性について検討する。
以上の結果から,SAMA-DiEGOはテスト問題の大部分において,より優れた解に迅速に収束できることが示唆された。
論文 参考訳(メタデータ) (2022-12-13T09:10:08Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
本稿では,ノード,エッジ,あるいはその両方に情報をエンコードするグラフベースの問題を扱う新しいニューラル改善(NI)モデルを提案する。
提案モデルは,各地区の操作の選択を誘導する丘登頂に基づくアルゴリズムの基本的な構成要素として機能する。
論文 参考訳(メタデータ) (2022-06-01T10:35:29Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
マルチモーダル・多目的最適化問題(MMOP)を解くための定常進化アルゴリズムを提案する。
本報告では,1000関数評価の低計算予算を用いて,様々なテストスイートから得られた21個のMMOPの性能について報告する。
論文 参考訳(メタデータ) (2022-01-18T03:31:11Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Surrogate Assisted Evolutionary Algorithm for Medium Scale Expensive
Multi-Objective Optimisation Problems [4.338938227238059]
目的関数の代理モデルを構築することは、進化アルゴリズム(EA)が現実世界の複雑な最適化問題を解決するのに効果的であることが示されている。
本稿では,50個の決定変数を持つ中規模の高コスト多目的最適化問題に対して,ガウス過程サロゲートモデルによるEA支援手法を提案する。
提案アルゴリズムの有効性を,3つの最先端SAEAと比較し,10,20,50変数のベンチマーク問題に対して検証した。
論文 参考訳(メタデータ) (2020-02-08T12:06:08Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。