Optimal Sequential Recommendations: Exploiting User and Item Structure
- URL: http://arxiv.org/abs/2504.19476v1
- Date: Mon, 28 Apr 2025 04:34:17 GMT
- Title: Optimal Sequential Recommendations: Exploiting User and Item Structure
- Authors: Mina Karzand, Guy Bresler,
- Abstract summary: We study the situation in which the type preference matrix has i.i.d. entries.<n>Our main contribution is an algorithm that simultaneously uses both item and user structures, proved to be near-optimal.
- Score: 11.463828712115225
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We consider an online model for recommendation systems, with each user being recommended an item at each time-step and providing 'like' or 'dislike' feedback. A latent variable model specifies the user preferences: both users and items are clustered into types. The model captures structure in both the item and user spaces, as used by item-item and user-user collaborative filtering algorithms. We study the situation in which the type preference matrix has i.i.d. entries. Our main contribution is an algorithm that simultaneously uses both item and user structures, proved to be near-optimal via corresponding information-theoretic lower bounds. In particular, our analysis highlights the sub-optimality of using only one of item or user structure (as is done in most collaborative filtering algorithms).
Related papers
- Why Not Together? A Multiple-Round Recommender System for Queries and Items [37.709748983831034]
A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests.<n>We propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types.
arXiv Detail & Related papers (2024-12-14T10:49:00Z) - ULMRec: User-centric Large Language Model for Sequential Recommendation [16.494996929730927]
We propose ULMRec, a framework that integrates user personalized preferences into Large Language Models.<n>Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods.
arXiv Detail & Related papers (2024-12-07T05:37:00Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Eliciting User Preferences for Personalized Multi-Objective Decision
Making through Comparative Feedback [76.7007545844273]
We propose a multi-objective decision making framework that accommodates different user preferences over objectives.
Our model consists of a Markov decision process with a vector-valued reward function, with each user having an unknown preference vector.
We suggest an algorithm that finds a nearly optimal policy for the user using a small number of comparison queries.
arXiv Detail & Related papers (2023-02-07T23:58:19Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
We show that matrix factorization-based collaborative filtering algorithms induce a kind of stereotyping.
If preferences for a textitset of items are anti-correlated in the general user population, then those items may not be recommended together to a user.
We propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user.
arXiv Detail & Related papers (2021-06-23T18:37:47Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z) - Learning Heterogeneous Temporal Patterns of User Preference for Timely
Recommendation [15.930016839929047]
We propose a novel recommender system for timely recommendations, called TimelyRec.
In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder.
Our experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec.
arXiv Detail & Related papers (2021-04-29T08:37:30Z) - Dual-embedding based Neural Collaborative Filtering for Recommender
Systems [0.7949579654743338]
We propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering.
In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation.
arXiv Detail & Related papers (2021-02-04T11:32:11Z) - Regret in Online Recommendation Systems [73.58127515175127]
This paper proposes a theoretical analysis of recommendation systems in an online setting, where items are sequentially recommended to users over time.
In each round, a user, randomly picked from a population of $m$ users, requests a recommendation. The decision-maker observes the user and selects an item from a catalogue of $n$ items.
The performance of the recommendation algorithm is captured through its regret, considering as a reference an Oracle algorithm aware of these probabilities.
arXiv Detail & Related papers (2020-10-23T12:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.