論文の概要: Diffusion Stochastic Learning Over Adaptive Competing Networks
- arxiv url: http://arxiv.org/abs/2504.19635v1
- Date: Mon, 28 Apr 2025 09:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.387244
- Title: Diffusion Stochastic Learning Over Adaptive Competing Networks
- Title(参考訳): 適応型競合ネットワークにおける拡散確率学習
- Authors: Yike Zhao, Haoyuan Cai, Ali H. Sayed,
- Abstract要約: 本稿では,協調エージェントのネットワークで構成される2つのチーム間の動的ゲームについて検討する。
本稿では,このネットワークゲームにおける2つの重要なクラスに対処する拡散学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 28.974218453862825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a stochastic dynamic game between two competing teams, each consisting of a network of collaborating agents. Unlike fully cooperative settings, where all agents share a common objective, each team in this game aims to minimize its own distinct objective. In the adversarial setting, their objectives could be conflicting as in zero-sum games. Throughout the competition, agents share strategic information within their own team while simultaneously inferring and adapting to the strategies of the opposing team. We propose diffusion learning algorithms to address two important classes of this network game: i) a zero-sum game characterized by weak cross-team subgraph interactions, and ii) a general non-zero-sum game exhibiting strong cross-team subgraph interactions. We analyze the stability performance of the proposed algorithms under reasonable assumptions and illustrate the theoretical results through experiments on Cournot team competition and decentralized GAN training.
- Abstract(参考訳): 本稿では,協調エージェントのネットワークで構成される2つのチーム間の確率的ダイナミックゲームについて検討する。
すべてのエージェントが共通の目的を共有する完全に協調的な設定とは異なり、このゲームの各チームは、独自の目的を最小化することを目的としている。
敵の設定では、その目的はゼロサムゲームのように矛盾する可能性がある。
競争を通じて、エージェントは自身のチーム内で戦略情報を共有し、同時に相手チームの戦略を推測し、適応します。
本稿では,このネットワークゲームにおける2つの重要なクラスに対処する拡散学習アルゴリズムを提案する。
一 チーム間部分グラフの弱い相互作用を特徴とするゼロサムゲーム及び
二 強いチーム間サブグラフの相互作用を示す一般ゼロサムゲーム
提案アルゴリズムの安定性性能を合理的な仮定で解析し,Cournotチームコンペティションと分散GANトレーニングによる理論的結果を説明する。
関連論文リスト
- pFedGame -- Decentralized Federated Learning using Game Theory in Dynamic Topology [1.1970409518725493]
pFedGameは、時間的動的ネットワークに適した分散フェデレーション学習のために提案されている。
提案アルゴリズムは集約のための集中型サーバを使わずに動作する。
pFedGameの性能を評価する実験は、不均一なデータに対して70%以上の精度で有望な結果を示した。
論文 参考訳(メタデータ) (2024-10-05T06:39:16Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Neural Population Learning beyond Symmetric Zero-sum Games [52.20454809055356]
我々はNuPL-JPSROという,スキルの伝達学習の恩恵を受けるニューラル集団学習アルゴリズムを導入し,ゲームの粗相関(CCE)に収束する。
本研究は, 均衡収束型集団学習を大規模かつ汎用的に実施可能であることを示す。
論文 参考訳(メタデータ) (2024-01-10T12:56:24Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
競争ゲームのシナリオでは、エージェントのセットは、彼らの目標を最大化し、敵の目標を同時に最小化する決定を学習する必要があります。
本稿では,競争ゲームの表現を学習し,特定の相手の戦略をどうマップするか,それらを破壊するかを学習する3つのニューラルネットワーク層からなる新しいモデルを提案する。
我々の実験は、オフライン、オンライン、競争特化モデル、特に同じ対戦相手と複数回対戦した場合に、我々のモデルがより良いパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-10-02T08:11:07Z) - Value-based CTDE Methods in Symmetric Two-team Markov Game: from
Cooperation to Team Competition [3.828689444527739]
混合協調競争環境における協調的価値ベース手法の評価を行った。
集中型トレーニングと分散型実行パラダイムに基づく3つのトレーニング手法を選択した。
実験では、StarCraft Multi-Agent Challenge環境を変更して、両チームが同時に学び、競争できる競争環境を作りました。
論文 参考訳(メタデータ) (2022-11-21T22:25:55Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
現実世界のマルチエージェントシステムでは、異なる能力を持つエージェントがチーム全体の目標を変更することなく参加または離脱する可能性がある。
この問題に取り組むコーチ・プレイヤー・フレームワーク「COPA」を提案します。
1)コーチと選手の両方の注意メカニズムを採用し、2)学習を正規化するための変動目標を提案し、3)コーチが選手とのコミュニケーションのタイミングを決定するための適応的なコミュニケーション方法を設計する。
論文 参考訳(メタデータ) (2021-05-18T17:27:37Z) - Competing Adaptive Networks [56.56653763124104]
適応エージェントのチーム間での分散競争のためのアルゴリズムを開発する。
本稿では,生成的対向ニューラルネットワークの分散学習への応用について述べる。
論文 参考訳(メタデータ) (2021-03-29T14:42:15Z) - Multi-Agent Coordination in Adversarial Environments through Signal
Mediated Strategies [37.00818384785628]
チームメンバーはゲームの開始前に戦略を調整できるが、ゲームのプレイ段階ではコミュニケーションが取れない。
この設定では、エージェントのポリシーが分散的に実行されるため、モデルフリーのRLメソッドはコーディネーションをキャプチャできないことが多い。
我々は,従来の最先端マルチエージェントRLアルゴリズムが適用しなかった場合に,座標平衡に収束することを示す。
論文 参考訳(メタデータ) (2021-02-09T18:44:16Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
我々はFortAttackと呼ばれる競合するマルチエージェント環境を開発し、2つのチームが互いに競合する。
このような振る舞いがチームの成功に繋がる場合、同種エージェント間の異種行動の自然発生を観察する。
我々は、進化した反対戦略を利用して、友好的なエージェントのための単一のポリシーを訓練するアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2020-07-06T22:35:56Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
本稿では,競争力のあるマルチプレイヤーカードゲームの現実的な実装を学習・プレイするために,一般的な強化学習アルゴリズムをどのように適用できるかについて検討する。
本研究は,学習エージェントに対して,エージェントが競争力を持つことの学習方法を評価するための特定のトレーニングと検証ルーチンを提案し,それらが相互の演奏スタイルにどのように適応するかを説明する。
論文 参考訳(メタデータ) (2020-04-08T14:11:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。