Fitness Landscape of Large Language Model-Assisted Automated Algorithm Search
- URL: http://arxiv.org/abs/2504.19636v2
- Date: Thu, 01 May 2025 08:33:32 GMT
- Title: Fitness Landscape of Large Language Model-Assisted Automated Algorithm Search
- Authors: Fei Liu, Qingfu Zhang, Xialiang Tong, Kun Mao, Mingxuan Yuan,
- Abstract summary: We show and analyze the fitness landscape of Large Language Models-assisted Algorithm Search.<n>Our findings reveal that LAS landscapes are highly multimodal and rugged.<n>We also demonstrate how population size influences exploration-exploitation trade-offs and the evolving trajectory of elite algorithms.
- Score: 15.767411435705752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant potential in algorithm design. However, when integrated into search frameworks for iterative algorithm search, the underlying fitness landscape--critical for understanding search behaviou--remains underexplored. In this paper, we illustrate and analyze the fitness landscape of LLM-assisted Algorithm Search (LAS) using a graph-based approach, where nodes represent algorithms and edges denote transitions between them. We conduct extensive evaluations across six algorithm design tasks and six commonly used LLMs. Our findings reveal that LAS landscapes are highly multimodal and rugged, particularly in combinatorial optimization tasks, with distinct structural variations across tasks and LLMs. For instance, heuristic design tasks exhibit dense clusters of high-performing algorithms, while symbolic regression tasks show sparse, scattered distributions. Additionally, we demonstrate how population size influences exploration-exploitation trade-offs and the evolving trajectory of elite algorithms. These insights not only advance our understanding of LAS landscapes but also provide practical guidance for designing more effective LAS methods.
Related papers
- Aligning Multimodal LLM with Human Preference: A Survey [62.89722942008262]
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training.<n>Multimodal Large Language Models (MLLMs) have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data.<n>However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed.
arXiv Detail & Related papers (2025-03-18T17:59:56Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.<n>We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - Are Large-Language Models Graph Algorithmic Reasoners? [45.592341677933646]
We introduce a benchmark designed to evaluate Large Language Models (LLMs) performance on classical algorithmic reasoning tasks on explicit graphs.
Our benchmark encompasses five fundamental algorithms: Breadth-First Search (BFS) and Depth-First Search (DFS) for connectivity, Dijkstra's algorithm and Floyd-Warshall algorithm for all nodes shortest path, and Prim's Minimum Spanning Tree (MST-Prim's) algorithm.
arXiv Detail & Related papers (2024-10-29T23:28:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
Large Language Models (LLMs) are pivotal in advancing natural language processing.
LLMs often struggle with complex reasoning tasks due to inefficient attention distributions.
We introduce a novel method for extending computed tokens in the Chain-of-Thought process, utilizing attention mechanism optimization.
arXiv Detail & Related papers (2024-03-22T03:23:58Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Multi-layer local optima networks for the analysis of advanced local
search-based algorithms [0.6299766708197881]
Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular optimization problem based on a specific neighborhood operator and a local search algorithm.
This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis.
arXiv Detail & Related papers (2020-04-29T03:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.