Are Large-Language Models Graph Algorithmic Reasoners?
- URL: http://arxiv.org/abs/2410.22597v1
- Date: Tue, 29 Oct 2024 23:28:37 GMT
- Title: Are Large-Language Models Graph Algorithmic Reasoners?
- Authors: Alexander K Taylor, Anthony Cuturrufo, Vishal Yathish, Mingyu Derek Ma, Wei Wang,
- Abstract summary: We introduce a benchmark designed to evaluate Large Language Models (LLMs) performance on classical algorithmic reasoning tasks on explicit graphs.
Our benchmark encompasses five fundamental algorithms: Breadth-First Search (BFS) and Depth-First Search (DFS) for connectivity, Dijkstra's algorithm and Floyd-Warshall algorithm for all nodes shortest path, and Prim's Minimum Spanning Tree (MST-Prim's) algorithm.
- Score: 45.592341677933646
- License:
- Abstract: We seek to address a core challenge facing current Large Language Models (LLMs). LLMs have demonstrated superior performance in many tasks, yet continue to struggle with reasoning problems on explicit graphs that require multiple steps. To address this gap, we introduce a novel benchmark designed to evaluate LLM performance on classical algorithmic reasoning tasks on explicit graphs. Our benchmark encompasses five fundamental algorithms: Breadth-First Search (BFS) and Depth-First Search (DFS) for connectivity, Dijkstra's algorithm and Floyd-Warshall algorithm for all nodes shortest path, and Prim's Minimum Spanning Tree (MST-Prim's) algorithm. Through extensive experimentation, we assess the capabilities of state-of-the-art LLMs in executing these algorithms step-by-step and systematically evaluate their performance at each stage. Our findings highlight the persistent challenges LLMs face in this domain and underscore the necessity for advanced prompting techniques and algorithmic instruction to enhance their graph reasoning abilities. This work presents MAGMA, the first comprehensive benchmark focused on LLMs completing classical graph algorithms, and provides a critical step toward understanding and improving their structured problem-solving skills.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains.
They still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics.
We propose a novel approach, BEATS, to enhance mathematical problem-solving abilities.
arXiv Detail & Related papers (2024-09-26T15:47:42Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures.
We propose NLGraph, a benchmark of graph-based problem solving simulating in natural language.
arXiv Detail & Related papers (2023-05-17T08:29:21Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
arXiv Detail & Related papers (2022-05-31T09:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.