A Unified Benchmark of Federated Learning with Kolmogorov-Arnold Networks for Medical Imaging
- URL: http://arxiv.org/abs/2504.19639v1
- Date: Mon, 28 Apr 2025 09:53:05 GMT
- Title: A Unified Benchmark of Federated Learning with Kolmogorov-Arnold Networks for Medical Imaging
- Authors: Youngjoon Lee, Jinu Gong, Joonhyuk Kang,
- Abstract summary: Kolmogorov-Arnold Networks (KAN) can effectively replace Federated Learning (FL)<n>KAN is a promising alternative for privacy-preserving medical imaging applications in distributed healthcare.
- Score: 3.536605202672355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables model training across decentralized devices without sharing raw data, thereby preserving privacy in sensitive domains like healthcare. In this paper, we evaluate Kolmogorov-Arnold Networks (KAN) architectures against traditional MLP across six state-of-the-art FL algorithms on a blood cell classification dataset. Notably, our experiments demonstrate that KAN can effectively replace MLP in federated environments, achieving superior performance with simpler architectures. Furthermore, we analyze the impact of key hyperparameters-grid size and network architecture-on KAN performance under varying degrees of Non-IID data distribution. Additionally, our ablation studies reveal that optimizing KAN width while maintaining minimal depth yields the best performance in federated settings. As a result, these findings establish KAN as a promising alternative for privacy-preserving medical imaging applications in distributed healthcare. To the best of our knowledge, this is the first comprehensive benchmark of KAN in FL settings for medical imaging task.
Related papers
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation [0.4499833362998489]
We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets.
FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets.
arXiv Detail & Related papers (2024-08-21T15:26:21Z) - A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation [5.011091042850546]
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data.
collecting task-specific medical data for such finetuning at a central location raises many privacy concerns.
Although Federated learning (FL) provides an effective means for training on private decentralized data, communication costs in federating large foundation models can quickly become a significant bottleneck.
arXiv Detail & Related papers (2024-07-31T16:48:06Z) - F-KANs: Federated Kolmogorov-Arnold Networks [3.8277268808551512]
We present an innovative federated learning (FL) approach that utilizes Kolmogorov-Arnold Networks (KANs) for classification tasks.
The study evaluates the performance of federated KANs compared to traditional Multi-Layer Perceptrons (MLPs) classification task.
arXiv Detail & Related papers (2024-07-29T15:28:26Z) - Enhancing Fast Feed Forward Networks with Load Balancing and a Master Leaf Node [49.08777822540483]
Fast feedforward networks (FFFs) exploit the observation that different regions of the input space activate distinct subsets of neurons in wide networks.
We propose the incorporation of load balancing and Master Leaf techniques into the FFF architecture to improve performance and simplify the training process.
arXiv Detail & Related papers (2024-05-27T05:06:24Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.