論文の概要: Multimodal Conditioned Diffusive Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2504.19669v1
- Date: Mon, 28 Apr 2025 10:56:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.40458
- Title: Multimodal Conditioned Diffusive Time Series Forecasting
- Title(参考訳): マルチモーダル条件付き拡散時系列予測
- Authors: Chen Su, Yuanhe Tian, Yan Song,
- Abstract要約: 時系列予測(TSF)のためのマルチモーダル条件付き拡散モデルを提案する。
タイムスタンプとテキストを組み合わせて、異なるデータポイント間の時間的および意味的な相関を確立する。
実世界のベンチマークデータセットの実験では、提案したMCD-TSFモデルが最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 16.72476672866356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models achieve remarkable success in processing images and text, and have been extended to special domains such as time series forecasting (TSF). Existing diffusion-based approaches for TSF primarily focus on modeling single-modality numerical sequences, overlooking the rich multimodal information in time series data. To effectively leverage such information for prediction, we propose a multimodal conditioned diffusion model for TSF, namely, MCD-TSF, to jointly utilize timestamps and texts as extra guidance for time series modeling, especially for forecasting. Specifically, Timestamps are combined with time series to establish temporal and semantic correlations among different data points when aggregating information along the temporal dimension. Texts serve as supplementary descriptions of time series' history, and adaptively aligned with data points as well as dynamically controlled in a classifier-free manner. Extensive experiments on real-world benchmark datasets across eight domains demonstrate that the proposed MCD-TSF model achieves state-of-the-art performance.
- Abstract(参考訳): 拡散モデルは画像やテキストの処理において顕著な成功を収め、時系列予測(TSF)のような特殊な領域に拡張されている。
TSFの既存の拡散に基づくアプローチは、主に時系列データにおける豊富なマルチモーダル情報を見越して、単一モードの数値列をモデル化することに焦点を当てている。
このような情報を予測に効果的に活用するために、時系列モデリング、特に予測のための追加ガイダンスとしてタイムスタンプとテキストを併用するマルチモーダル・コンディション拡散モデル(MCD-TSF)を提案する。
特に、タイムスタンプは時系列と組み合わせて、時間次元に沿って情報を集約する際に異なるデータポイント間の時間的および意味的な相関を確立する。
テキストは時系列の歴史の補足的な記述として機能し、データポイントと適応的に一致し、分類器のない方法で動的に制御される。
8つの領域にわたる実世界のベンチマークデータセットに対する大規模な実験は、提案したMCD-TSFモデルが最先端のパフォーマンスを達成することを実証している。
関連論文リスト
- TimesBERT: A BERT-Style Foundation Model for Time Series Understanding [72.64824086839631]
GPTスタイルのモデルは時系列予測の基礎モデルとして位置づけられている。
BERTスタイルのアーキテクチャは時系列理解のために完全にアンロックされていない。
時系列の汎用表現を学ぶために TimesBERT を設計する。
私たちのモデルは、さまざまなドメインにまたがる2600億のタイムポイントで事前トレーニングされています。
論文 参考訳(メタデータ) (2025-02-28T17:14:44Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - LAST SToP For Modeling Asynchronous Time Series [19.401463051705377]
Asynchronous Time Series に合わせたLarge Language Models (LLM) のための新しいプロンプト設計を提案する。
我々のアプローチはイベント記述のリッチな自然言語を効果的に活用し、LLMはさまざまなドメインやタスクをまたがる推論において、広範囲にわたる知識の恩恵を受けることができる。
さらに、モデル性能を大幅に向上させる新しいプロンプトチューニング機構であるSoft Promptingを導入し、QLoRAのような既存の微調整方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-02-04T01:42:45Z) - Unveiling the Potential of Text in High-Dimensional Time Series Forecasting [12.707274099874384]
本稿では,時系列モデルと大規模言語モデルを統合する新しいフレームワークを提案する。
マルチモーダルモデルにインスパイアされた本手法では, 時系列データとテキストデータを重塔構造で結合する。
テキストを組み込んだ実験により,高次元時系列予測性能が向上することが示された。
論文 参考訳(メタデータ) (2025-01-13T04:10:45Z) - Generalized Prompt Tuning: Adapting Frozen Univariate Time Series Foundation Models for Multivariate Healthcare Time Series [3.9599054392856483]
時系列基礎モデルは、大規模なデータセットで事前訓練され、様々なタスクで最先端のパフォーマンスを達成することができる。
我々は、既存の単変量時系列基礎モデルに適応できる、素早いチューニングインスパイアされた微調整技術Gen-P-Tuningを提案する。
2つのMIMIC分類課題とインフルエンザ様疾患予測における各種ベースラインに対する微調整アプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-19T19:20:58Z) - FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
我々は,より優れた一般化を持ち,正規時間と不規則時間の両方をサポートする普遍時系列予測モデルFlexTSFを提案する。
12のデータセットの実験では、FlexTSFは、それぞれ通常の時系列と不規則時系列のために設計された最先端の予測モデルより優れていることが示されている。
論文 参考訳(メタデータ) (2024-10-30T16:14:09Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。