論文の概要: Unveiling the Potential of Text in High-Dimensional Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2501.07048v1
- Date: Mon, 13 Jan 2025 04:10:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:30.523114
- Title: Unveiling the Potential of Text in High-Dimensional Time Series Forecasting
- Title(参考訳): 高次元時系列予測におけるテキストの可能性
- Authors: Xin Zhou, Weiqing Wang, Shilin Qu, Zhiqiang Zhang, Christoph Bergmeir,
- Abstract要約: 本稿では,時系列モデルと大規模言語モデルを統合する新しいフレームワークを提案する。
マルチモーダルモデルにインスパイアされた本手法では, 時系列データとテキストデータを重塔構造で結合する。
テキストを組み込んだ実験により,高次元時系列予測性能が向上することが示された。
- 参考スコア(独自算出の注目度): 12.707274099874384
- License:
- Abstract: Time series forecasting has traditionally focused on univariate and multivariate numerical data, often overlooking the benefits of incorporating multimodal information, particularly textual data. In this paper, we propose a novel framework that integrates time series models with Large Language Models to improve high-dimensional time series forecasting. Inspired by multimodal models, our method combines time series and textual data in the dual-tower structure. This fusion of information creates a comprehensive representation, which is then processed through a linear layer to generate the final forecast. Extensive experiments demonstrate that incorporating text enhances high-dimensional time series forecasting performance. This work paves the way for further research in multimodal time series forecasting.
- Abstract(参考訳): 時系列予測は伝統的に単変量および多変量数値データに重点を置いており、しばしば多モーダル情報(特にテキストデータ)を組み込むことの利点を見落としている。
本稿では,高次元時系列予測を改善するために,時系列モデルと大規模言語モデルを統合する新しいフレームワークを提案する。
マルチモーダルモデルにインスパイアされた本手法では, 時系列データとテキストデータを重塔構造で結合する。
この情報の融合は包括的表現を生成し、それを線形層を通して処理して最終的な予測を生成する。
テキストを組み込んだ実験により,高次元時系列予測性能が向上することが実証された。
この研究は、マルチモーダル時系列予測におけるさらなる研究の道を開くものである。
関連論文リスト
- Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
時系列予測のためのMetaTST(Metadata-informed Time Series Transformer)を提案する。
メタデータの非構造化の性質に取り組むため、MetaTSTは、事前に設計されたテンプレートによってそれらを自然言語に形式化する。
Transformerエンコーダは、メタデータ情報によるシーケンス表現を拡張するシリーズトークンとメタデータトークンの通信に使用される。
論文 参考訳(メタデータ) (2024-10-04T11:37:55Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting [30.054015098590874]
時系列予測のための時系列解釈のためのシリーズサリエンシーフレームワークを提示する。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、サリエンシーマップのセグメンテーションを適用する。
本フレームワークは,時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
論文 参考訳(メタデータ) (2020-12-16T23:48:00Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
時系列データは、多くの科学と工学の分野で広く使われている。
本稿では,トランスフォーマーに基づく機械学習モデルを用いた時系列予測の新しい手法を提案する。
提案手法により得られた予測結果は,最先端技術と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-01-23T00:22:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。