Reconstructing Context: Evaluating Advanced Chunking Strategies for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2504.19754v1
- Date: Mon, 28 Apr 2025 12:52:05 GMT
- Title: Reconstructing Context: Evaluating Advanced Chunking Strategies for Retrieval-Augmented Generation
- Authors: Carlo Merola, Jaspinder Singh,
- Abstract summary: Retrieval-augmented generation (RAG) has become a transformative approach for enhancing large language models (LLMs)<n>This study presents a rigorous analysis of late chunking and contextual retrieval, evaluating their effectiveness and efficiency in optimizing RAG systems.<n>Our results indicate that contextual retrieval preserves semantic coherence more effectively but requires greater computational resources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) has become a transformative approach for enhancing large language models (LLMs) by grounding their outputs in external knowledge sources. Yet, a critical question persists: how can vast volumes of external knowledge be managed effectively within the input constraints of LLMs? Traditional methods address this by chunking external documents into smaller, fixed-size segments. While this approach alleviates input limitations, it often fragments context, resulting in incomplete retrieval and diminished coherence in generation. To overcome these shortcomings, two advanced techniques, late chunking and contextual retrieval, have been introduced, both aiming to preserve global context. Despite their potential, their comparative strengths and limitations remain unclear. This study presents a rigorous analysis of late chunking and contextual retrieval, evaluating their effectiveness and efficiency in optimizing RAG systems. Our results indicate that contextual retrieval preserves semantic coherence more effectively but requires greater computational resources. In contrast, late chunking offers higher efficiency but tends to sacrifice relevance and completeness.
Related papers
- InfiniteICL: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation [57.310236384112834]
In-context learning (ICL) is critical for large language models (LLMs) but its effectiveness is constrained by finite context windows.<n>We introduce InfiniteICL, a framework that parallels context and parameters in LLMs with short- and long-term memory.<n>We demonstrate that our method reduces context length by 90% while achieving 103% average performance of full-context prompting.
arXiv Detail & Related papers (2025-04-02T13:15:44Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
We propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning.<n>This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation.<n>Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output.
arXiv Detail & Related papers (2025-02-16T16:31:00Z) - ParetoRAG: Leveraging Sentence-Context Attention for Robust and Efficient Retrieval-Augmented Generation [8.223134723149753]
We present an unsupervised framework that optimize Retrieval-Augmented Generation (RAG) systems.
By decomposing paragraphs into sentences, we dynamically re-weighting core content while preserving contextual coherence.
This framework has been validated across various datasets, Large Language Models (LLMs), and retrievers.
arXiv Detail & Related papers (2025-02-12T07:32:48Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.<n>Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.<n>We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources.
This paper investigates the detrimental impact of retrieved "hard negatives" as a key contributor.
To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches.
arXiv Detail & Related papers (2024-10-08T12:30:07Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
We introduce a novel approach that re-imagines information retrieval through dynamic in-context editing.
By treating lengthy contexts as malleable external knowledge, our method interactively gathers and integrates relevant information.
Experimental results demonstrate that our method effectively empowers context-limited LLMs to engage in multi-hop reasoning with improved performance.
arXiv Detail & Related papers (2024-06-18T06:54:28Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
The integration of retrieved passages and large language models (LLMs) has significantly contributed to improving open-domain question answering.
This paper investigates different methods of combining retrieved passages with LLMs to enhance answer generation.
arXiv Detail & Related papers (2023-08-24T05:26:54Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.