RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence
- URL: http://arxiv.org/abs/2507.02949v1
- Date: Sat, 28 Jun 2025 21:40:35 GMT
- Title: RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence
- Authors: Vipula Rawte, Rajarshi Roy, Gurpreet Singh, Danush Khanna, Yaswanth Narsupalli, Basab Ghosh, Abhay Gupta, Argha Kamal Samanta, Aditya Shingote, Aadi Krishna Vikram, Vinija Jain, Aman Chadha, Amit Sheth, Amitava Das,
- Abstract summary: Retrieval-Augmented Generation (RAG) is a technique to enhance factual accuracy by integrating external knowledge into the generation process.<n>This paper introduces Radiant, a framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content.
- Score: 5.066415370344766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) continue to advance, Retrieval-Augmented Generation (RAG) has emerged as a vital technique to enhance factual accuracy by integrating external knowledge into the generation process. However, LLMs often fail to faithfully integrate retrieved evidence into their generated responses, leading to factual inconsistencies. To quantify this gap, we introduce Entity-Context Divergence (ECD), a metric that measures the extent to which retrieved information is accurately reflected in model outputs. We systematically evaluate contemporary LLMs on their ability to preserve factual consistency in retrieval-augmented settings, a capability we define as RAG-ability. Our empirical analysis reveals that RAG-ability remains low across most LLMs, highlighting significant challenges in entity retention and context fidelity. This paper introduces Radiant (Retrieval AugmenteD entIty-context AligNmenT), a novel framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content. Radiant extends Direct Preference Optimization (DPO) to teach LLMs how to integrate provided additional information into subsequent generations. As a behavior correction mechanism, Radiant boosts RAG performance across varied retrieval scenarios, such as noisy web contexts, knowledge conflicts, and hallucination reduction. This enables more reliable, contextually grounded, and factually coherent content generation.
Related papers
- Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation [32.30660197797758]
We introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD)<n>We demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method.<n>Our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution.
arXiv Detail & Related papers (2025-05-22T09:04:03Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation [91.20492150248106]
We investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases.<n>We propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs.<n> Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory.
arXiv Detail & Related papers (2025-02-21T15:50:41Z) - ParetoRAG: Leveraging Sentence-Context Attention for Robust and Efficient Retrieval-Augmented Generation [8.223134723149753]
We present an unsupervised framework that optimize Retrieval-Augmented Generation (RAG) systems.<n>By decomposing paragraphs into sentences, we dynamically re-weighting core content while preserving contextual coherence.<n>This framework has been validated across various datasets, Large Language Models (LLMs), and retrievers.
arXiv Detail & Related papers (2025-02-12T07:32:48Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.<n>Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.<n>We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models [20.605487145370752]
We find that imperfect retrieval augmentation is inevitable, common, and harmful.<n>We propose Astute RAG, a novel RAG approach designed to be resilient to imperfect retrieval augmentation.<n>Experiments with Gemini and Claude demonstrate the superior performance of Astute RAG compared to previous robustness-enhanced RAG approaches.
arXiv Detail & Related papers (2024-10-09T17:59:58Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.