論文の概要: Heterophily-informed Message Passing
- arxiv url: http://arxiv.org/abs/2504.19785v1
- Date: Mon, 28 Apr 2025 13:28:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.448607
- Title: Heterophily-informed Message Passing
- Title(参考訳): Heterophily-informed Message Passing
- Authors: Haishan Wang, Arno Solin, Vikas Garg,
- Abstract要約: グラフニューラルネットワーク(GNN)は、その暗黙のホモフィリー仮定のため、過密に弱いことが知られている。
我々はこの問題をメッセージの集約を規制する新しいスキームで緩和する。
われわれのアプローチは学習した埋め込みにのみ依存し、補助ラベルの必要性を回避している。
- 参考スコア(独自算出の注目度): 16.73251866177758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) are known to be vulnerable to oversmoothing due to their implicit homophily assumption. We mitigate this problem with a novel scheme that regulates the aggregation of messages, modulating the type and extent of message passing locally thereby preserving both the low and high-frequency components of information. Our approach relies solely on learnt embeddings, obviating the need for auxiliary labels, thus extending the benefits of heterophily-aware embeddings to broader applications, e.g., generative modelling. Our experiments, conducted across various data sets and GNN architectures, demonstrate performance enhancements and reveal heterophily patterns across standard classification benchmarks. Furthermore, application to molecular generation showcases notable performance improvements on chemoinformatics benchmarks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、その暗黙のホモフィリー仮定のため、過密に弱いことが知られている。
メッセージのアグリゲーションを規制し、メッセージのタイプと範囲を局所的に調整し、低周波成分と高周波成分の両方を保存する新しい方式でこの問題を緩和する。
我々のアプローチは学習した埋め込みにのみ依存し、補助的なラベルの必要性を回避し、ヘテロフィリ認識の埋め込みの利点をより広範なアプリケーション、例えば生成的モデリングにまで広げる。
各種データセットとGNNアーキテクチャにまたがって実施した本実験では,性能向上を実証し,標準分類ベンチマークにおけるヘテロフィリパターンを明らかにした。
さらに、分子生成への応用は、化学情報学ベンチマークにおいて顕著な性能向上を示す。
関連論文リスト
- FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning [12.834423184614849]
サブグラフフェデレートラーニング(Subgraph Federated Learning, Subgraph-FL)は、マルチクライアントサブグラフによるグラフニューラルネットワーク(GNN)の協調トレーニングを容易にする。
ノードとトポロジの変化は、複数のローカルGNNのクラスレベルの知識信頼性に大きな違いをもたらす。
本研究では,局所モデルからグローバルモデルへの信頼性の高い知識伝達を促進するために,トポロジ対応データフリーな知識蒸留技術(FedTAD)を提案する。
論文 参考訳(メタデータ) (2024-04-22T10:19:02Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
合成スペクトルデータ生成分野におけるGANの応用について報告する。
CWGANは,低データ方式の性能向上を図り,サロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-07-14T16:27:24Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
グラフトランスフォーマー(GT)は、グラフ全体にわたってもメッセージパッシングがより広範なカバレッジに伝達できるパラダイムで機能する。
ヘテロジニアス情報ネットワーク(HIN)におけるGTの探索はまだ未公開である。
本稿では,ノード表現学習のための大域集約機構を利用するHINormerという新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-02-22T12:25:07Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
教師付きニューラル情報検索モデルでは,通過トークンよりも疎注意パターンを学習することが困難であることを示す。
目的とする新しい合成データ生成手法を用いて、与えられた通路内の全てのエンティティに対して、より均一で堅牢な参加をニューラルIRに教える。
論文 参考訳(メタデータ) (2022-04-24T22:36:48Z) - Stochastic Aggregation in Graph Neural Networks [9.551282469099887]
グラフニューラルネットワーク(GNN)は、過スムージングおよび限られた電力識別を含む病理を発現する。
GNNsにおける集約のための統合フレームワーク(STAG)を提案する。そこでは、近隣からの集約プロセスにノイズが(適応的に)注入され、ノード埋め込みを形成する。
論文 参考訳(メタデータ) (2021-02-25T02:52:03Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
グラフニューラルネットワーク(GNN)は、両方の証拠源を利用するように設計されている。
本稿では,GPR重みを適応的に学習する汎用PageRank (GPR) GNNアーキテクチャを提案する。
GPR-GNNは、合成データとベンチマークデータの両方の既存の技術と比較して、大幅な性能改善を提供する。
論文 参考訳(メタデータ) (2020-06-14T19:27:39Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。