Can a Crow Hatch a Falcon? Lineage Matters in Predicting Large Language Model Performance
- URL: http://arxiv.org/abs/2504.19811v1
- Date: Mon, 28 Apr 2025 14:08:45 GMT
- Title: Can a Crow Hatch a Falcon? Lineage Matters in Predicting Large Language Model Performance
- Authors: Takuya Tamura, Taro Yano, Masafumi Enomoto, Masafumi Oyamada,
- Abstract summary: We propose a novel Lineage-Regularized Matrix Factorization (LRMF) framework that encodes ancestral ties among Large Language Models (LLMs)<n>LRMF consistently outperforms conventional matrix factorization and collaborative filtering methods in both instance-level and benchmark-level performance prediction.<n>Our large-scale study includes 2,934 publicly available Hugging Face models and 21,000+ instances across 6 major benchmarks.
- Score: 2.649901869321331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately forecasting the performance of Large Language Models (LLMs) before extensive fine-tuning or merging can substantially reduce both computational expense and development time. Although prior approaches like scaling laws account for global factors such as parameter size or training tokens, they often overlook explicit lineage relationships - i.e., which models are derived or merged from which parents. In this work, we propose a novel Lineage-Regularized Matrix Factorization (LRMF) framework that encodes ancestral ties among LLMs via a graph Laplacian regularizer. By leveraging multi-hop parent-child connections, LRMF consistently outperforms conventional matrix factorization and collaborative filtering methods in both instance-level and benchmark-level performance prediction. Our large-scale study includes 2,934 publicly available Hugging Face models and 21,000+ instances across 6 major benchmarks, showing that lineage constraints yield up to 7-10 percentage points higher correlation with actual performance compared to baselines. Moreover, LRMF effectively addresses the cold-start problem, providing accurate estimates for newly derived or merged models even with minimal data. This lineage-guided strategy thus offers a resource-efficient way to inform hyperparameter tuning, data selection, and model combination in modern LLM development.
Related papers
- Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
Building effective Transformer-based large language models (LLMs) has recently become a research focus.
We compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost.
Our studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs.
arXiv Detail & Related papers (2025-03-12T17:50:42Z) - LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation [34.227734210743904]
Collaborative filtering models have shown strong performance in capturing user-item interactions for recommendation systems.<n>The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance.
arXiv Detail & Related papers (2025-03-03T18:41:59Z) - Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages [10.418542753869433]
Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data.<n>Current state-of-the-art large language models (LLMs) still struggle with LRLs.<n>Small multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes.
arXiv Detail & Related papers (2025-02-14T13:10:39Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.<n>In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Aggregating Low Rank Adapters in Federated Fine-tuning [0.0]
Fine-tuning large language models requires high computational and memory resources, and is therefore associated with significant costs.<n>We propose a novel aggregation method and compare it with different existing aggregation methods of low rank adapters trained in a federated fine-tuning of large machine learning models.<n>We evaluate their performance with respect to selected GLUE benchmark datasets.
arXiv Detail & Related papers (2025-01-10T20:24:33Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
This paper introduces Model-GLUE, a holistic Large Language Models scaling guideline.<n>We benchmark existing scaling techniques, especially selective merging, and variants of mixture.<n>We then formulate an optimal strategy for the selection and aggregation of a heterogeneous model zoo.<n>Our methodology involves the clustering of mergeable models and optimal merging strategy selection, and the integration of clusters.
arXiv Detail & Related papers (2024-10-07T15:55:55Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Augmenting Interpretable Models with LLMs during Training [73.40079895413861]
We propose Augmented Interpretable Models (Aug-imodels) to build efficient and interpretable models.
Aug-imodels use LLMs during fitting but not during inference, allowing complete transparency.
We explore two instantiations of Aug-imodels in natural-language processing: (i) Aug-GAM, which augments a generalized additive model with decoupled embeddings from an LLM and (ii) Aug-Tree, which augments a decision tree with LLM feature expansions.
arXiv Detail & Related papers (2022-09-23T18:36:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.