論文の概要: Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
- arxiv url: http://arxiv.org/abs/2504.19822v1
- Date: Mon, 28 Apr 2025 14:22:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.462551
- Title: Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
- Title(参考訳): Mjölnir: グローバルなライトニングフラッシュ密度のためのディープラーニングパラメトリゼーションフレームワーク
- Authors: Minjong Cheon,
- Abstract要約: 我々は,グローバルなフラッシュ密度パラメータ化のための新しいディープラーニングベースのフレームワークであるMj"olnirを提案する。
Mj"olnirは、大規模環境条件と雷活動の間の非線形マッピングをキャプチャする。
雷活動のグローバル分布,季節変動,地域特性を正確に再現し,年間平均場のピアソン相関係数0.96を達成している。
- 参考スコア(独自算出の注目度): 4.8951183832371
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
- Abstract(参考訳): FourCastNet、Pangu-Weather、GraphCastといったAIベースの天気予報モデルの最近の進歩は、複雑な大気力学をエミュレートするディープラーニングの驚くべき能力を示している。
この運動量に基づいてMj\"olnirを提案する。
ERA5大気予測器とWWLLN(World Wide Lightning Location Network)で毎日の時間分解能と1度の空間分解能で訓練されたMj\"olnirは、大規模環境条件と雷活動の間の非線形マッピングを捉えている。
モデルアーキテクチャは、SENetを備えたInceptionNeXtバックボーンと、雷の発生とマグニチュードを同時に予測するマルチタスク学習戦略に基づいている。
Mollnirは,年間平均値0.96のPearson相関係数を達成し,雷活動のグローバル分布,季節変動,地域特性を正確に再現した。
これらの結果から,Mj\"olnirはデータ駆動型グローバル雷のパラメータ化だけでなく,次世代地球系モデル(AI-ESMs)のAIベースのスキームとしても機能することが示唆された。
関連論文リスト
- Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appaはスコアベースのデータ同化モデルで、地球規模の大気軌道を0.25度と1時間間隔で生成する。
この結果から,将来的な大気モデルシステムの基礎として,潜在スコアに基づくデータ同化が確立される。
論文 参考訳(メタデータ) (2025-04-25T22:14:29Z) - LightWeather: Harnessing Absolute Positional Encoding to Efficient and Scalable Global Weather Forecasting [21.048535830456363]
絶対的な位置符号化がTransformerベースの天気予報モデルで実際に機能していることが示される。
本稿では,測候の軽量かつ効果的なモデルであるLightWeatherを提案する。
論文 参考訳(メタデータ) (2024-08-19T04:23:40Z) - GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCastは、レーダベースの降雨をアンサンブルする深層学習法である。
我々は、トークン化レーダ画像を用いて降水動態を学習するために、GPTモデルを用いて予測を行う。
論文 参考訳(メタデータ) (2024-07-02T09:25:58Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
110kmのメッシュ上で最大1年間のリードタイムで,3時間分解能を持つ7つの大気変数の予測を行うため,同種の深層学習天気予報モデルを提案する。
Pangu-WeatherやGraphCastのような最先端の機械学習(SOTA)天気予報モデルと比較して、我々のDLWP-HPXモデルは粗い分解能と予測変数がはるかに少ない。
論文 参考訳(メタデータ) (2023-09-11T16:25:48Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。