Breast Cancer Detection from Multi-View Screening Mammograms with Visual Prompt Tuning
- URL: http://arxiv.org/abs/2504.19900v1
- Date: Mon, 28 Apr 2025 15:31:08 GMT
- Title: Breast Cancer Detection from Multi-View Screening Mammograms with Visual Prompt Tuning
- Authors: Han Chen, Anne L. Martel,
- Abstract summary: We propose a novel Multi-view Visual Prompt Tuning Network (MVPT-NET) for analyzing multiple screening mammograms.<n>We first pretrain a robust single-view classification model on high-resolution mammograms and then innovatively adapt multi-view feature learning into a task-specific prompt tuning process.<n>Our approach offers an efficient alternative to traditional feature fusion methods, providing a more robust, scalable, and efficient solution for high-resolution mammogram analysis.
- Score: 3.3670613441132993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection of breast cancer from high-resolution mammograms is crucial for early diagnosis and effective treatment planning. Previous studies have shown the potential of using single-view mammograms for breast cancer detection. However, incorporating multi-view data can provide more comprehensive insights. Multi-view classification, especially in medical imaging, presents unique challenges, particularly when dealing with large-scale, high-resolution data. In this work, we propose a novel Multi-view Visual Prompt Tuning Network (MVPT-NET) for analyzing multiple screening mammograms. We first pretrain a robust single-view classification model on high-resolution mammograms and then innovatively adapt multi-view feature learning into a task-specific prompt tuning process. This technique selectively tunes a minimal set of trainable parameters (7\%) while retaining the robustness of the pre-trained single-view model, enabling efficient integration of multi-view data without the need for aggressive downsampling. Our approach offers an efficient alternative to traditional feature fusion methods, providing a more robust, scalable, and efficient solution for high-resolution mammogram analysis. Experimental results on a large multi-institution dataset demonstrate that our method outperforms conventional approaches while maintaining detection efficiency, achieving an AUROC of 0.852 for distinguishing between Benign, DCIS, and Invasive classes. This work highlights the potential of MVPT-NET for medical imaging tasks and provides a scalable solution for integrating multi-view data in breast cancer detection.
Related papers
- Deep BI-RADS Network for Improved Cancer Detection from Mammograms [3.686808512438363]
We introduce a novel multi-modal approach that combines textual BI-RADS lesion descriptors with visual mammogram content.
Our method employs iterative attention layers to effectively fuse these different modalities.
Experiments on the CBIS-DDSM dataset demonstrate substantial improvements across all metrics.
arXiv Detail & Related papers (2024-11-16T21:32:51Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Towards Robust Natural-Looking Mammography Lesion Synthesis on
Ipsilateral Dual-Views Breast Cancer Analysis [1.1098503592431275]
Two major issues of mammogram classification tasks are leveraging multi-view mammographic information and class-imbalance handling.
We propose a simple but novel method for enhancing examined view (main view) by leveraging low-level feature information from the auxiliary view.
We also propose a simple but novel malignant mammogram synthesis framework for up synthesizing minor class samples.
arXiv Detail & Related papers (2023-09-07T06:33:30Z) - MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain
Multi-Center Breast Cancer Screening [4.587250201300601]
Mammography poses challenges due to the high variability and patterns in mammograms.
MammoDG is a novel deep-learning framework for generalisable and reliable analysis of cross-domain multi-center mammography data.
arXiv Detail & Related papers (2023-08-02T10:10:22Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
A new contrastive learning scheme is developed to augment the generalization capability of deep learning model to various vendors with limited resources.
The backbone network is trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor-styles.
The experimental results suggest that our approach can effectively improve detection performance on both seen and unseen domains.
arXiv Detail & Related papers (2021-11-21T14:29:50Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.