論文の概要: Emergence and scaling laws in SGD learning of shallow neural networks
- arxiv url: http://arxiv.org/abs/2504.19983v1
- Date: Mon, 28 Apr 2025 16:58:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.52012
- Title: Emergence and scaling laws in SGD learning of shallow neural networks
- Title(参考訳): 浅部ニューラルネットワークのSGD学習における創発性とスケーリング則
- Authors: Yunwei Ren, Eshaan Nichani, Denny Wu, Jason D. Lee,
- Abstract要約: 等方性ガウスデータに基づいてP$ニューロンを持つ2層ニューラルネットワークを学習するためのオンライン勾配降下(SGD)の複雑さについて検討した。
平均二乗誤差(MSE)を最小化するために,学生2層ネットワークのトレーニングのためのSGDダイナミックスを高精度に解析する。
- 参考スコア(独自算出の注目度): 46.632052892298375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the complexity of online stochastic gradient descent (SGD) for learning a two-layer neural network with $P$ neurons on isotropic Gaussian data: $f_*(\boldsymbol{x}) = \sum_{p=1}^P a_p\cdot \sigma(\langle\boldsymbol{x},\boldsymbol{v}_p^*\rangle)$, $\boldsymbol{x} \sim \mathcal{N}(0,\boldsymbol{I}_d)$, where the activation $\sigma:\mathbb{R}\to\mathbb{R}$ is an even function with information exponent $k_*>2$ (defined as the lowest degree in the Hermite expansion), $\{\boldsymbol{v}^*_p\}_{p\in[P]}\subset \mathbb{R}^d$ are orthonormal signal directions, and the non-negative second-layer coefficients satisfy $\sum_{p} a_p^2=1$. We focus on the challenging ``extensive-width'' regime $P\gg 1$ and permit diverging condition number in the second-layer, covering as a special case the power-law scaling $a_p\asymp p^{-\beta}$ where $\beta\in\mathbb{R}_{\ge 0}$. We provide a precise analysis of SGD dynamics for the training of a student two-layer network to minimize the mean squared error (MSE) objective, and explicitly identify sharp transition times to recover each signal direction. In the power-law setting, we characterize scaling law exponents for the MSE loss with respect to the number of training samples and SGD steps, as well as the number of parameters in the student neural network. Our analysis entails that while the learning of individual teacher neurons exhibits abrupt transitions, the juxtaposition of $P\gg 1$ emergent learning curves at different timescales leads to a smooth scaling law in the cumulative objective.
- Abstract(参考訳): F_*(\boldsymbol{x}) = \sum_{p=1}^P a_p\cdot \sigma(\langle\boldsymbol{x},\boldsymbol{v}_p^*\rangle)$, $\boldsymbol{x} \sim \mathcal{N}(0,\boldsymbol{I}_d)$。
我々は、挑戦的な ‘extensive-width' 体制 $P\gg 1$ に着目し、第2層の分岐条件番号を許容し、特別なケースとして、パワーロースケーリング $a_p\asymp p^{-\beta}$ をカバーします。
学生2層ネットワークのトレーニングのためのSGDダイナミクスを正確に解析し、平均二乗誤差(MSE)の目標を最小化し、信号方向を復元するシャープな遷移時間を明確に同定する。
パワー・ロー・セッティングでは、トレーニングサンプル数やSGDステップ数、および学生ニューラルネットワークにおけるパラメータ数に関して、MSE損失のスケーリング法指数を特徴付ける。
我々の分析は、個々の教師ニューロンの学習が急激な遷移を示す一方で、異なる時間スケールでのP\gg 1$の創発的学習曲線の並置は累積的な目的においてスムーズなスケーリング法則をもたらすことを示唆している。
関連論文リスト
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の勾配勾配勾配学習問題について検討する。
SGDに基づくアルゴリズムにより最適化された2層ニューラルネットワークは、情報指数に支配されない複雑さで$f_*$を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - SGD Finds then Tunes Features in Two-Layer Neural Networks with
near-Optimal Sample Complexity: A Case Study in the XOR problem [1.3597551064547502]
本研究では,2層ニューラルネットワーク上でのミニバッチ降下勾配(SGD)の最適化過程について考察する。
二次 XOR' 関数 $y = -x_ix_j$ でラベル付けされた $d$-dimensional Boolean hypercube から得られるデータから、人口誤差 $o(1)$ と $d :textpolylog(d)$ のサンプルをトレーニングすることが可能であることを証明した。
論文 参考訳(メタデータ) (2023-09-26T17:57:44Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
SGDで訓練されたReLU NNは、主方向を回復することで、$y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$という形の単一インデックスターゲットを学習できることを示す。
また、SGDによる近似低ランク構造を用いて、NNに対して圧縮保証を提供する。
論文 参考訳(メタデータ) (2022-09-29T15:29:10Z) - High-dimensional Asymptotics of Feature Learning: How One Gradient Step
Improves the Representation [89.21686761957383]
2層ネットワークにおける第1層パラメータ $boldsymbolW$ の勾配降下ステップについて検討した。
我々の結果は、一つのステップでもランダムな特徴に対してかなりの優位性が得られることを示した。
論文 参考訳(メタデータ) (2022-05-03T12:09:59Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
2層ニューラルネットワークを学習する際の降下のダイナミクスについて考察する。
過度にパラメータ化された2層ニューラルネットワークは、タンジェントサンプルを用いて、ほとんどの地上で勾配損失を許容的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-09T07:09:28Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。