論文の概要: Mitigating Catastrophic Forgetting in the Incremental Learning of Medical Images
- arxiv url: http://arxiv.org/abs/2504.20033v1
- Date: Mon, 28 Apr 2025 17:56:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.549949
- Title: Mitigating Catastrophic Forgetting in the Incremental Learning of Medical Images
- Title(参考訳): 医用画像の漸進的学習におけるカタストロフィック・フォーミングの軽減
- Authors: Sara Yavari, Jacob Furst,
- Abstract要約: 本稿では,T2強調(T2w)MRI画像前立腺癌検出におけるディープラーニングモデルの精度と効率を高めるために,インクリメンタルラーニング(IL)アプローチを提案する。
我々は、MRI(PI-CAI)を用いた前立腺がん検出に焦点をあてた複数の保健所の人工知能と放射線学データを用いた。
我々は、過去のタスクから生成された画像を用いて、その後のタスクのためのモデルのトレーニングをガイドするために、知識蒸留(KD)を利用した。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an Incremental Learning (IL) approach to enhance the accuracy and efficiency of deep learning models in analyzing T2-weighted (T2w) MRI medical images prostate cancer detection using the PI-CAI dataset. We used multiple health centers' artificial intelligence and radiology data, focused on different tasks that looked at prostate cancer detection using MRI (PI-CAI). We utilized Knowledge Distillation (KD), as it employs generated images from past tasks to guide the training of models for subsequent tasks. The approach yielded improved performance and faster convergence of the models. To demonstrate the versatility and robustness of our approach, we evaluated it on the PI-CAI dataset, a diverse set of medical imaging modalities including OCT and PathMNIST, and the benchmark continual learning dataset CIFAR-10. Our results indicate that KD can be a promising technique for IL in medical image analysis in which data is sourced from individual health centers and the storage of large datasets is not feasible. By using generated images from prior tasks, our method enables the model to retain and apply previously acquired knowledge without direct access to the original data.
- Abstract(参考訳): 本稿では, PI-CAIデータセットを用いたT2強調(T2w)MRI画像前立腺癌検出におけるディープラーニングモデルの精度と効率を高めるために, インクリメンタルラーニング(IL)アプローチを提案する。
我々は、MRI(PI-CAI)を用いた前立腺がん検出の異なるタスクに焦点をあて、複数の保健所の人工知能と放射線学データを使用した。
我々は、過去のタスクから生成された画像を用いて、その後のタスクのためのモデルのトレーニングをガイドするために、知識蒸留(KD)を利用した。
このアプローチにより、性能が向上し、モデルの収束が早くなった。
提案手法の汎用性とロバスト性を実証するため,PI-CAIデータセット,OCTやPathMNISTを含む多種多様な医用画像モダリティ,ベンチマーク連続学習データセットCIFAR-10を用いて評価を行った。
以上の結果から,KDは医療画像解析において,個々の保健所からデータを抽出し,大規模データセットの保存が不可能な,有望な技術である可能性が示唆された。
従来のタスクから生成した画像を使用することで,本手法では,元のデータに直接アクセスすることなく,事前取得した知識を保持,適用することが可能となる。
関連論文リスト
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - Self-supervised Model Based on Masked Autoencoders Advance CT Scans
Classification [0.0]
本稿では,自己教師付き学習アルゴリズムMAEに着想を得た。
ImageNetで事前トレーニングされたMAEモデルを使用して、CT Scansデータセット上で転送学習を実行する。
この方法はモデルの一般化性能を改善し、小さなデータセットに過度に適合するリスクを回避する。
論文 参考訳(メタデータ) (2022-10-11T00:52:05Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
従来のコントラストフレームワークを新しいメタデータ強化戦略で拡張する。
本手法では,画像間のコントラスト関係の真のセットを近似するために,患者メタデータを広く活用する。
提案手法は、6つの画像レベル下流タスクのうち5つにおいて、標準コントラスト法と網膜画像基盤モデルの両方に優れる。
論文 参考訳(メタデータ) (2022-08-04T08:53:15Z) - Application of Homomorphic Encryption in Medical Imaging [60.51436886110803]
医療画像の予測にHEを用いて,不正な二次的データの使用を防止できることを示す。
結節検出に3次元胸部CT-Scansを用いた実験を行った。
論文 参考訳(メタデータ) (2021-10-12T19:57:12Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - Interpretable and synergistic deep learning for visual explanation and
statistical estimations of segmentation of disease features from medical
images [0.0]
医学画像からの病因分類やセグメンテーションのための深層学習(DL)モデルは、無関係な自然界画像からの伝達学習(TL)を用いて、ますます訓練されている。
TL後バイナリセグメンテーションに広く用いられているDLアーキテクチャの比較,厳密な統計的解析,および比較について報告する。
TIIおよびLMIモデル、コード、10,000以上の医療画像の無料GitHubリポジトリと、この研究からのGrad-CAM出力は、高度な計算医学の出発点として利用できる。
論文 参考訳(メタデータ) (2020-11-11T14:08:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。