EPSILON: Adaptive Fault Mitigation in Approximate Deep Neural Network using Statistical Signatures
- URL: http://arxiv.org/abs/2504.20074v1
- Date: Thu, 24 Apr 2025 20:37:37 GMT
- Title: EPSILON: Adaptive Fault Mitigation in Approximate Deep Neural Network using Statistical Signatures
- Authors: Khurram Khalil, Khaza Anuarul Hoque,
- Abstract summary: We introduce EPSILON, a lightweight framework for efficient fault detection and mitigation in deep neural network accelerators (AxDNNs)<n>Our framework introduces a novel non-parametric pattern-matching algorithm that enables constant-time fault detection without interrupting normal execution.<n> EPSILON maintains model accuracy by intelligently adjusting mitigation strategies based on a statistical analysis of weight distribution and layer criticality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing adoption of approximate computing in deep neural network accelerators (AxDNNs) promises significant energy efficiency gains. However, permanent faults in AxDNNs can severely degrade their performance compared to their accurate counterparts (AccDNNs). Traditional fault detection and mitigation approaches, while effective for AccDNNs, introduce substantial overhead and latency, making them impractical for energy-constrained real-time deployment. To address this, we introduce EPSILON, a lightweight framework that leverages pre-computed statistical signatures and layer-wise importance metrics for efficient fault detection and mitigation in AxDNNs. Our framework introduces a novel non-parametric pattern-matching algorithm that enables constant-time fault detection without interrupting normal execution while dynamically adapting to different network architectures and fault patterns. EPSILON maintains model accuracy by intelligently adjusting mitigation strategies based on a statistical analysis of weight distribution and layer criticality while preserving the energy benefits of approximate computing. Extensive evaluations across various approximate multipliers, AxDNN architectures, popular datasets (MNIST, CIFAR-10, CIFAR-100, ImageNet-1k), and fault scenarios demonstrate that EPSILON maintains 80.05\% accuracy while offering 22\% improvement in inference time and 28\% improvement in energy efficiency, establishing EPSILON as a practical solution for deploying reliable AxDNNs in safety-critical edge applications.
Related papers
- Evidential Uncertainty Probes for Graph Neural Networks [3.5169632430086315]
We propose a plug-and-play framework for uncertainty quantification in Graph Neural Networks (GNNs)<n>Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations.<n>EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
arXiv Detail & Related papers (2025-03-11T07:00:54Z) - Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Network [1.5215973379400674]
Spiking Neural Networks (SNNs) are seen as an energy-efficient alternative to traditional Artificial Neural Networks (ANNs)<n>We present a unified training-free conversion framework that significantly enhances both the performance and efficiency of converted SNNs.
arXiv Detail & Related papers (2024-12-18T09:38:54Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)<n>By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.<n>We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Asymmetrical estimator for training encapsulated deep photonic neural networks [10.709758849326061]
Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms.<n>We introduce the asymmetrical training (AsyT) method, tailored for encapsulated DPNNs.<n>AsyT offers a lightweight solution for DPNNs with minimum readouts, fast and energy-efficient operation, and minimum system footprint.
arXiv Detail & Related papers (2024-05-28T17:27:20Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
its Gradient Estimator Bias [65.13042449121411]
In practice, training a network with the gradient estimates provided by EP does not scale to visual tasks harder than MNIST.
We show that a bias in the gradient estimate of EP, inherent in the use of finite nudging, is responsible for this phenomenon.
We apply these techniques to train an architecture with asymmetric forward and backward connections, yielding a 13.2% test error.
arXiv Detail & Related papers (2020-06-06T09:36:07Z) - QUANOS- Adversarial Noise Sensitivity Driven Hybrid Quantization of
Neural Networks [3.2242513084255036]
QUANOS is a framework that performs layer-specific hybrid quantization based on Adversarial Noise Sensitivity (ANS)
Our experiments on CIFAR10, CIFAR100 datasets show that QUANOS outperforms homogenously quantized 8-bit precision baseline in terms of adversarial robustness.
arXiv Detail & Related papers (2020-04-22T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.