論文の概要: Toward Safe and Human-Aligned Game Conversational Recommendation via Multi-Agent Decomposition
- arxiv url: http://arxiv.org/abs/2504.20094v2
- Date: Thu, 16 Oct 2025 19:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 13:49:08.619984
- Title: Toward Safe and Human-Aligned Game Conversational Recommendation via Multi-Agent Decomposition
- Title(参考訳): マルチエージェント分解による安全なヒューマンアライメントゲームの提案に向けて
- Authors: Zheng Hui, Xiaokai Wei, Yexi Jiang, Kevin Gao, Chen Wang, Frank Ong, Se-eun Yoon, Rachit Pareek, Michelle Gong,
- Abstract要約: 会話レコメンデータシステムのためのマルチエージェントフレームワークであるMATCHAを提案する。
インテント解析、ツール拡張検索、リフレクション付きマルチLLMランキング、説明、リスク管理のための特殊エージェントを割り当てる。
8つの指標で6つのベースラインを上回り、hit@5を20%改善し、人気バイアスを24%減らし、97.9%の敵防衛を達成した。
- 参考スコア(独自算出の注目度): 6.573045734898783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational recommender systems (CRS) have advanced with large language models, showing strong results in domains like movies. These domains typically involve fixed content and passive consumption, where user preferences can be matched by genre or theme. In contrast, games present distinct challenges: fast-evolving catalogs, interaction-driven preferences (e.g., skill level, mechanics, hardware), and increased risk of unsafe responses in open-ended conversation. We propose MATCHA, a multi-agent framework for CRS that assigns specialized agents for intent parsing, tool-augmented retrieval, multi-LLM ranking with reflection, explanation, and risk control which enabling finer personalization, long-tail coverage, and stronger safety. Evaluated on real user request dataset, MATCHA outperforms six baselines across eight metrics, improving Hit@5 by 20%, reducing popularity bias by 24%, and achieving 97.9% adversarial defense. Human and virtual-judge evaluations confirm improved explanation quality and user alignment.
- Abstract(参考訳): 会話レコメンデータシステム(CRS)は大きな言語モデルで進歩し、映画のような領域で大きな成果を上げている。
これらのドメインは通常、固定されたコンテンツと受動的消費を含んでおり、そこではユーザーの好みはジャンルやテーマによって一致させることができる。
対照的に、ゲームには、高速進化カタログ、インタラクション駆動の好み(例えば、スキルレベル、メカニクス、ハードウェア)、オープンエンド会話における安全でない応答のリスクの増加など、さまざまな課題がある。
目的分析,ツール拡張検索,リフレクション付きマルチLLMランキング,説明,リスク制御のための特殊エージェントを割り当てる多エージェントフレームワークであるMATCHAを提案する。
実際のユーザリクエストデータセットに基づいて評価され、MATCHAは8つのメトリクスで6つのベースラインを上回り、hit@5を20%改善し、人気バイアスを24%削減し、97.9%の敵防衛を達成した。
人間と仮想ジャッジの評価では、説明品質とユーザアライメントが改善された。
関連論文リスト
- The Future is Agentic: Definitions, Perspectives, and Open Challenges of Multi-Agent Recommender Systems [8.36558427125949]
大規模言語モデル(LLM)は、計画、記憶、外部ツールの呼び出し、相互運用が可能なエージェントエンティティへと急速に進化している。
本稿では,LLMエージェントがレコメンデーションシステムの設計空間をどう変えるかを検討する。
エージェント的抽象化を推奨対象と統一することにより、次世代のパーソナライズされ、信頼性が高く、コンテキストに富んだレコメンデーションサービスの基礎を成す。
論文 参考訳(メタデータ) (2025-07-02T19:25:44Z) - Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent [56.61028117645315]
本稿では,蒸留した思考パターンを通じて複雑なユーザ意図に対処する,思考増強型対話型推薦エージェントシステム(TAIRA)を提案する。
具体的には、ユーザニーズを分解し、サブタスクを計画することでレコメンデーションタスクを編成するマネージャエージェントを備えたLLM方式のマルチエージェントシステムとして設計されている。
複数のデータセットにまたがる包括的な実験により、IRAは既存の手法に比べて大幅に性能が向上した。
論文 参考訳(メタデータ) (2025-06-30T03:15:50Z) - AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems [17.329692234349768]
エージェントレコメンデータシステムはLarge Language Models (LLM)を利用している
LLMの高度な推論とロールプレイング能力は、自律的で適応的な意思決定を可能にする。
この分野では、これらの手法を評価するための標準化された評価プロトコルが欠けている。
論文 参考訳(メタデータ) (2025-05-26T07:45:11Z) - Dynamic Evaluation Framework for Personalized and Trustworthy Agents: A Multi-Session Approach to Preference Adaptability [10.443994990138973]
我々は、パーソナライズされた適応的なエージェントを評価するパラダイムシフトについて論じる。
本稿では,ユニークな属性と好みを持つユーザペルソナをモデル化する包括的新しいフレームワークを提案する。
私たちのフレキシブルなフレームワークは、さまざまなエージェントやアプリケーションをサポートし、レコメンデーション戦略の包括的で汎用的な評価を保証するように設計されています。
論文 参考訳(メタデータ) (2025-03-08T22:50:26Z) - Personalized Recommendation Systems using Multimodal, Autonomous, Multi Agent Systems [0.6629765271909505]
本稿では,マルチモーダル,自律型,マルチエージェントシステムを用いた高度に開発されたパーソナライズされたレコメンデーションシステムについて述べる。
このシステムは、未来的なAI技術と、顧客サービス体験を改善するためにGemini-1.5- ProやLLaMA-70BのようなLLMを取り入れることに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-22T14:11:26Z) - Generative Recommender with End-to-End Learnable Item Tokenization [51.82768744368208]
ETEGRecは、アイテムのトークン化と生成的レコメンデーションを結合的なフレームワークに統合する、新しいEnd-to-End Generative Recommenderである。
ETEGRecはデュアルエンコーダ-デコーダアーキテクチャ上に構築されており、アイテムトークン化器と生成推奨器で構成されている。
我々は、フレームワーク全体の安定的で効率的なエンドツーエンドトレーニングを保証するために、交互に最適化する手法を開発した。
論文 参考訳(メタデータ) (2024-09-09T12:11:53Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
本稿では,コプラ関数による妥当性と多様性を組み合わせた新しいレコメンデーション戦略を提案する。
我々は,システムと対話しながらユーザから得た知識量のサロゲートとして多様性を利用する。
我々の戦略は、最先端のライバル数社を上回っている。
論文 参考訳(メタデータ) (2024-08-07T13:48:24Z) - Prospect Personalized Recommendation on Large Language Model-based Agent
Platform [71.73768586184404]
本稿では,エージェントアイテムとエージェントレコメンダで構成されるRec4Agentverseという新しいレコメンデーションパラダイムを紹介する。
Rec4AgentverseはAgentItemsとAgent Recommenderのコラボレーションを強調し、パーソナライズされた情報サービスを促進する。
Rec4Agentverseのいくつかの症例に関する予備研究は、その応用の可能性を検証する。
論文 参考訳(メタデータ) (2024-02-28T11:12:17Z) - MACRec: a Multi-Agent Collaboration Framework for Recommendation [21.425320819792912]
マルチエージェントコラボレーションによるレコメンデーションシステムを強化するための新しいフレームワークであるMACRecを紹介する。
ユーザ/イテムシミュレーションにエージェントを使用する既存の作業とは異なり、マルチエージェントをデプロイしてレコメンデーションタスクに直接取り組もうとしている。
本稿では、評価予測、逐次レコメンデーション、会話レコメンデーション、レコメンデーション結果の説明生成など、様々なレコメンデーションタスクで開発者がMACRecを簡単に利用できるアプリケーションの例を示す。
論文 参考訳(メタデータ) (2024-02-23T09:57:20Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Multimodal Recommendation Dialog with Subjective Preference: A New
Challenge and Benchmark [38.613625892808706]
本稿では,SURE (Multimodal Recommendation Dialog with SUbjective Preference)を提案する。
データは、品質と多様性を保証するために、人間のアノテーションで2つのフェーズで構築されます。
SUREは、営業専門家が提案する主観的嗜好と推奨行為によく言及されている。
論文 参考訳(メタデータ) (2023-05-26T08:43:46Z) - Aligning Recommendation and Conversation via Dual Imitation [56.236932446280825]
提案するDICR(Dual Imitation for Conversational Recommendation)は,リコメンデーションパスとユーザ関心シフトパスを明確に整合させる2つの模倣を設計する。
アライメント信号の交換により、DICRはレコメンデーションと会話モジュール間の双方向のプロモーションを実現する。
実験により、DICRは推奨と会話のパフォーマンスに関する最先端モデルよりも、自動的、人的、斬新な説明可能性の指標の方が優れていることが示された。
論文 参考訳(メタデータ) (2022-11-05T08:13:46Z) - INSPIRED: Toward Sociable Recommendation Dialog Systems [51.1063713492648]
レコメンデーションダイアログでは、人間は通常自分の好みを開示し、友好的な方法でレコメンデーションを行う。
本稿では,映画レコメンデーションのための1,001人の人間-人間ダイアログのデータセットを提案する。
分析の結果,個人意見の共有や励ましとのコミュニケーションといった社会的レコメンデーション戦略が,より頻繁に実施されることが示唆された。
論文 参考訳(メタデータ) (2020-09-29T21:03:44Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
ベイズ的アプローチに基づく会話推薦システムを提案する。
エンターテイナーを予約するオンラインプラットフォームであるemphstagend.comへのこのアプローチの適用に基づくケーススタディについて論じる。
論文 参考訳(メタデータ) (2020-02-12T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。