論文の概要: Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems
- arxiv url: http://arxiv.org/abs/2504.20109v1
- Date: Sun, 27 Apr 2025 16:10:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.596932
- Title: Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems
- Title(参考訳): 神経科学にインスパイアされた連続学習システムによるパーソナライズされた人工知能(AGI)
- Authors: Rajeev Gupta, Suhani Gupta, Ronak Parikh, Divya Gupta, Amir Javaheri, Jairaj Singh Shaktawat,
- Abstract要約: 現在のアプローチは、タスク固有のパフォーマンスを改善するが、継続的で適応性があり、一般化された学習を可能にするには不十分なモデルパラメータの拡張に大きく依存している。
本稿では、連続学習と神経科学に触発されたAIの現状を概観し、脳のような学習機構をエッジ展開に統合したパーソナライズされたAGIのための新しいアーキテクチャを提案する。
これらの洞察に基づいて、我々は、相補的な高速かつスローな学習モジュール、シナプス的自己最適化、デバイス上の寿命適応をサポートするためのメモリ効率のモデル更新を特徴とするAIアーキテクチャの概要を述べる。
- 参考スコア(独自算出の注目度): 3.764721243654025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence has made remarkable advancements in recent years, primarily driven by increasingly large deep learning models. However, achieving true Artificial General Intelligence (AGI) demands fundamentally new architectures rather than merely scaling up existing models. Current approaches largely depend on expanding model parameters, which improves task-specific performance but falls short in enabling continuous, adaptable, and generalized learning. Achieving AGI capable of continuous learning and personalization on resource-constrained edge devices is an even bigger challenge. This paper reviews the state of continual learning and neuroscience-inspired AI, and proposes a novel architecture for Personalized AGI that integrates brain-like learning mechanisms for edge deployment. We review literature on continuous lifelong learning, catastrophic forgetting, and edge AI, and discuss key neuroscience principles of human learning, including Synaptic Pruning, Hebbian plasticity, Sparse Coding, and Dual Memory Systems, as inspirations for AI systems. Building on these insights, we outline an AI architecture that features complementary fast-and-slow learning modules, synaptic self-optimization, and memory-efficient model updates to support on-device lifelong adaptation. Conceptual diagrams of the proposed architecture and learning processes are provided. We address challenges such as catastrophic forgetting, memory efficiency, and system scalability, and present application scenarios for mobile AI assistants and embodied AI systems like humanoid robots. We conclude with key takeaways and future research directions toward truly continual, personalized AGI on the edge. While the architecture is theoretical, it synthesizes diverse findings and offers a roadmap for future implementation.
- Abstract(参考訳): 人工知能は近年顕著な進歩を遂げており、主に大規模なディープラーニングモデルによって推進されている。
しかし、真の人工知能(AGI)を達成するためには、単に既存のモデルをスケールアップするのではなく、根本的に新しいアーキテクチャが必要である。
現在のアプローチは、タスク固有のパフォーマンスを改善するが、継続的で適応性があり、一般化された学習を可能にするには不十分なモデルパラメータの拡張に大きく依存している。
リソース制約のあるエッジデバイス上で、継続的な学習とパーソナライズが可能なAGIを実現することは、さらに大きな課題です。
本稿では、連続学習と神経科学に触発されたAIの現状を概観し、脳のような学習機構をエッジ展開に統合したパーソナライズされたAGIのための新しいアーキテクチャを提案する。
我々は、連続的な生涯学習、破滅的な忘れ、エッジAIに関する文献をレビューし、AIシステムのインスピレーションとして、Synaptic Pruning、Hebbian plasticity、Sparse Coding、Dual Memory Systemsなど、人間の学習における重要な神経科学原則について議論する。
これらの洞察に基づいて、我々は、相補的な高速かつスローな学習モジュール、シナプス的自己最適化、デバイス上の寿命適応をサポートするためのメモリ効率のモデル更新を特徴とするAIアーキテクチャの概要を述べる。
提案するアーキテクチャと学習プロセスの概念図が提供される。
我々は、破滅的な忘れ物、メモリ効率、システムのスケーラビリティといった課題に対処し、モバイルAIアシスタントやヒューマノイドロボットのような組み込みAIシステム向けのアプリケーションシナリオを提示する。
我々は、真に連続的でパーソナライズされたAGIをエッジ上で実現するための重要な取り組みと今後の研究方向性を結論付ける。
アーキテクチャは理論的だが、多様な発見を合成し、将来の実装のロードマップを提供する。
関連論文リスト
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies [0.7796141041639462]
人工知能オントロジー(AIO)は、人工知能の概念、方法論、それらの相互関係の体系化である。
AIOは、AI技術の技術的側面と倫理的側面の両方を含む包括的なフレームワークを提供することによって、急速に進化するAIの展望に対処することを目指している。
論文 参考訳(メタデータ) (2024-04-03T20:08:15Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Draw your Neural Networks [0.0]
このGUIベースのアプローチを用いて,ニューラルネットワークの設計と修正を行うSketchフレームワークを提案する。
このシステムは一般的なレイヤと操作を最初から提供し、サポート対象のトレーニング済みモデルをインポートできる。
論文 参考訳(メタデータ) (2020-12-12T09:44:03Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
本稿では,コンクリートから抽象的(AIcon2abs)への新たな方法論,AIについて述べる。
主な戦略は、人工知能のデミスティフィケーションを促進することである。
WiSARDの軽量化により、トレーニングタスクと分類タスクの視覚化と理解が容易になる。
論文 参考訳(メタデータ) (2020-06-07T01:14:06Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。