論文の概要: Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies
- arxiv url: http://arxiv.org/abs/2406.11272v1
- Date: Mon, 17 Jun 2024 07:21:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 17:54:42.296623
- Title: Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies
- Title(参考訳): 機械学習とエキスパートシステム技術を用いた適応型マルチドメイン人工知能システムの開発
- Authors: Jeremy Straub,
- Abstract要約: 人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Producing an artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time. An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions. While AI techniques have been used across a wide variety of problem domains, an AGI would require an AI that could reason beyond its programming and training. This paper presents a small step towards producing an AGI. It describes a mechanism for an AI to learn about and develop reasoning pathways to make decisions in an a priori unknown domain. It combines a classical AI technique, the expert system, with a its modern adaptation - the gradient descent trained expert system (GDTES) - and utilizes generative artificial intelligence (GAI) to create a network and training data set for this system. These can be created from available sources or may draw upon knowledge incorporated in a GAI's own pre-trained model. The learning process in GDTES is used to optimize the AI's decision-making. While this approach does not meet the standards that many have defined for an AGI, it provides a somewhat similar capability, albeit one which requires a learning process before use.
- Abstract(参考訳): 人工知能(AI)の研究において、人工知能(AGI)の創出は、しばらくの間大きな目標であった。
AGIには、人間のように、新しい問題領域に触れて、それを学び、推論プロセスを使って意思決定する能力があるでしょう。
AI技術はさまざまな問題領域で使われてきたが、AGIはプログラミングやトレーニング以上の理由を持つAIを必要とするだろう。
本稿では,AGIの製作に向けての歩みについて述べる。
これはAIが事前の未知の領域で意思決定を行うための推論経路を学習し、開発するメカニズムを記述している。
古典的なAI技術であるエキスパートシステムと、その現代的な適応である勾配降下訓練エキスパートシステム(GDTES)を組み合わせて、生成人工知能(GAI)を使用して、このシステムのためのネットワークとトレーニングデータセットを作成する。
これらは利用可能なソースから作成したり、GAI自身のトレーニング済みモデルに組み込まれた知識に基づいて作成することができる。
GDTESの学習プロセスは、AIの意思決定を最適化するために使用される。
このアプローチは、多くの人がAGIのために定義した標準を満たしていないが、使用前に学習プロセスを必要とするものにもかかわらず、幾分似たような機能を提供する。
関連論文リスト
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
論文 参考訳(メタデータ) (2023-04-14T09:57:36Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
我々は、人工知能の観点から、脳にインスパイアされたAIの包括的概要を提供する。
私たちは、脳にインスパイアされたAIの現在の進歩と、AGIとの広範な関係から始まります。
次に、人間の知性とAIの両面での重要な特徴について述べる。
論文 参考訳(メタデータ) (2023-03-28T12:46:38Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
論文 参考訳(メタデータ) (2022-04-30T05:44:34Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
本章では,数学教育(ME)のデジタルツールとして使用されているAIシステムの概要を紹介する。
それはAIと機械学習(ML)の研究者を対象としており、教育アプリケーションで使われている特定の技術に光を当てています。
論文 参考訳(メタデータ) (2021-07-13T12:09:10Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
本稿では,コンクリートから抽象的(AIcon2abs)への新たな方法論,AIについて述べる。
主な戦略は、人工知能のデミスティフィケーションを促進することである。
WiSARDの軽量化により、トレーニングタスクと分類タスクの視覚化と理解が容易になる。
論文 参考訳(メタデータ) (2020-06-07T01:14:06Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。