Roadmap on Quantum Thermodynamics
- URL: http://arxiv.org/abs/2504.20145v1
- Date: Mon, 28 Apr 2025 18:00:06 GMT
- Title: Roadmap on Quantum Thermodynamics
- Authors: Steve Campbell, Irene D'Amico, Mario A. Ciampini, Janet Anders, Natalia Ares, Simone Artini, Alexia Auffèves, Lindsay Bassman Oftelie, Laetitia P. Bettmann, Marcus V. S. Bonança, Thomas Busch, Michele Campisi, Moallison F. Cavalcante, Luis A. Correa, Eloisa Cuestas, Ceren B. Dag, Salambô Dago, Sebastian Deffner, Adolfo Del Campo, Andreas Deutschmann-Olek, Sandro Donadi, Emery Doucet, Cyril Elouard, Klaus Ensslin, Paul Erker, Nicole Fabbri, Federico Fedele, Guilherme Fiusa, Thomás Fogarty, Joshua Folk, Giacomo Guarnieri, Abhaya S. Hegde, Santiago Hernández-Gómez, Chang-Kang Hu, Fernando Iemini, Bayan Karimi, Nikolai Kiesel, Gabriel T. Landi, Aleksander Lasek, Sergei Lemziakov, Gabriele Lo Monaco, Eric Lutz, Dmitrii Lvov, Olivier Maillet, Mohammad Mehboudi, Taysa M. Mendonça, Harry J. D. Miller, Andrew K. Mitchell, Mark T. Mitchison, Victor Mukherjee, Mauro Paternostro, Jukka Pekola, Martí Perarnau-Llobet, Ulrich Poschinger, Alberto Rolandi, Dario Rosa, Rafael Sánchez, Alan C. Santos, Roberto S. Sarthour, Eran Sela, Andrea Solfanelli, Alexandre M. Souza, Janine Splettstoesser, Dian Tan, Ludovico Tesser, Tan Van Vu, Artur Widera, Nicole Yunger Halpern, Krissia Zawadzki,
- Abstract summary: This Roadmap provides an overview of the recent developments across many of the field's sub-disciplines.<n>It assesses the key challenges and future prospects, providing a guide for its near term progress.
- Score: 59.07133245559213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The last two decades has seen quantum thermodynamics become a well established field of research in its own right. In that time, it has demonstrated a remarkably broad applicability, ranging from providing foundational advances in the understanding of how thermodynamic principles apply at the nano-scale and in the presence of quantum coherence, to providing a guiding framework for the development of efficient quantum devices. Exquisite levels of control have allowed state-of-the-art experimental platforms to explore energetics and thermodynamics at the smallest scales which has in turn helped to drive theoretical advances. This Roadmap provides an overview of the recent developments across many of the field's sub-disciplines, assessing the key challenges and future prospects, providing a guide for its near term progress.
Related papers
- Dynamical Casimir effect in superconducting cavities: from photon generation to universal quantum gates [49.1574468325115]
Chapter explores various aspects of the Dynamical Casimir Effect (DCE) and its implications in the context of circuit quantum electrodynamics (cQED)
arXiv Detail & Related papers (2025-04-15T16:28:00Z) - Quantum Thermodynamics in Spin Systems: A Review of Cycles and Applications [0.0]
Quantum thermodynamics is a powerful theoretical tool for assessing the suitability of quantum materials as platforms for novel technologies.
In this Review, we cover the mathematical formulation used to model the quantum thermodynamic behavior of small-scale systems.
We discuss theoretical results obtained after applying this approach to model Heisenberg-like spin systems.
arXiv Detail & Related papers (2024-11-19T12:51:32Z) - Speedup of thermodynamic entropy production via quantum dynamical criticality [0.0]
We make progress in connecting dynamical criticality to thermodynamics through a geometric perspective on entropy production.<n>Our findings suggest that dynamical criticality can lead the system to highly complex dynamics, indicating a possible pathway to thermalization.
arXiv Detail & Related papers (2024-07-03T17:57:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Exploring quantum thermodynamics with NMR [0.0]
Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
arXiv Detail & Related papers (2023-03-15T20:21:10Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Roles of quantum coherences in thermal machines [0.0]
Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harnessing quantum effects to such operations.
We present the recent developments regarding the role of quantum coherences in the performances of thermal machines.
arXiv Detail & Related papers (2020-06-01T18:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.