論文の概要: Causal Identification in Time Series Models
- arxiv url: http://arxiv.org/abs/2504.20172v1
- Date: Mon, 28 Apr 2025 18:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.625731
- Title: Causal Identification in Time Series Models
- Title(参考訳): 時系列モデルにおける因果同定
- Authors: Erik Jahn, Karthik Karnik, Leonard J. Schulman,
- Abstract要約: 時系列グラフの定数サイズセグメントに因果同定アルゴリズムを適用すると、因果効果の識別可能性を決定するのに十分であることを示す。
- 参考スコア(独自算出の注目度): 3.2635082758250693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze the applicability of the Causal Identification algorithm to causal time series graphs with latent confounders. Since these graphs extend over infinitely many time steps, deciding whether causal effects across arbitrary time intervals are identifiable appears to require computation on graph segments of unbounded size. Even for deciding the identifiability of intervention effects on variables that are close in time, no bound is known on how many time steps in the past need to be considered. We give a first bound of this kind that only depends on the number of variables per time step and the maximum time lag of any direct or latent causal effect. More generally, we show that applying the Causal Identification algorithm to a constant-size segment of the time series graph is sufficient to decide identifiability of causal effects, even across unbounded time intervals.
- Abstract(参考訳): 本稿では,因果的時系列グラフに対する因果同定アルゴリズムの適用性について解析する。
これらのグラフは無限に多くの時間ステップにわたって拡張されるため、任意の時間間隔における因果効果が特定可能であるかどうかを決定するには、未有界サイズのグラフセグメントの計算が必要である。
時間に近い変数に対する介入効果の識別可能性を決定するとしても、過去の時間ステップを考慮すべき数について境界は分かっていない。
我々は、時間ステップ当たりの変数の数と、直接的あるいは潜在的な因果効果の最大時間ラグにのみ依存するこの種の最初の境界を与える。
より一般に、時系列グラフの定数サイズセグメントに因果同定アルゴリズムを適用すると、非有界時間間隔においても因果効果の識別可能性を決定するのに十分であることを示す。
関連論文リスト
- Using Time Structure to Estimate Causal Effects [12.658042559371712]
時系列設定における直接(およびライトの経路規則全体を通して)因果効果を推定するための新しいアプローチを提案する。
このアプローチは、基礎となる時系列が構造ベクトル自己回帰過程であると仮定する。
論文 参考訳(メタデータ) (2025-04-15T11:21:37Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Identifiability of total effects from abstractions of time series causal graphs [2.5515299924109858]
本研究では,観測時系列からの介入による全効果の同定可能性の問題について検討する。
我々は、拡張された要約因果グラフと要約因果グラフの2つの抽象概念を考察する。
論文 参考訳(メタデータ) (2023-10-23T08:31:26Z) - Causal Discovery and Prediction: Methods and Algorithms [0.0]
本論文では、各介入の一般的なa-priori評価について紹介する。
任意の因果モデルにおける因果関係を同定する能動学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-18T01:19:37Z) - Identifiability of Direct Effects from Summary Causal Graphs [1.0878040851638]
本稿では,要約因果グラフから直接効果が図形的に識別可能なすべてのケースを特徴付ける。
これは2つの音の有限調整セットを与え、それが特定可能なときに直接効果を推定するために使用できる。
論文 参考訳(メタデータ) (2023-06-29T14:05:35Z) - DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena [59.291745595756346]
本研究では,時間遅延のウィンドウに関連する因果関係の発見に人間が参加できる視覚分析手法を提案する。
具体的には、論理に基づく因果関係の確立した手法を活用し、分析者が潜在的な原因の重要性を検証できるようにする。
効果は他の効果の原因となりうるので,本手法で検出した時間的要因と効果の関係を視覚フロー図にまとめることができる。
論文 参考訳(メタデータ) (2023-03-12T03:40:21Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - Normalized multivariate time series causality analysis and causal graph
reconstruction [0.0]
因果分析は科学の中心にある重要な問題であり、データサイエンスと機械学習において特に重要である。
この研究は、情報フローに基づく2変数時間系列因果推論の長期一般化とともに、この作業ラインをコミュニティに紹介する。
結果として得られる公式は透明であり、計算的に非常に効率的なアルゴリズムとして実装することができる。
論文 参考訳(メタデータ) (2021-04-23T00:46:35Z) - Fuzzy Stochastic Timed Petri Nets for Causal properties representation [68.8204255655161]
因果関係はしばしば有向グラフで表され、原因を示すノードと因果関係を表すリンクがある。
因果シナリオをグラフィカルに表現するために使われる一般的な方法は、ニューロン、真理表、因果ベイズネットワーク、認知地図、ペトリネットである。
従来のモデルは、前述のプロパティのいくつかを別々に表現できるが、それら全てをはっきりと説明しようとはしないことを示す。
論文 参考訳(メタデータ) (2020-11-24T13:22:34Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。