AI Supply Chains: An Emerging Ecosystem of AI Actors, Products, and Services
- URL: http://arxiv.org/abs/2504.20185v1
- Date: Mon, 28 Apr 2025 18:36:41 GMT
- Title: AI Supply Chains: An Emerging Ecosystem of AI Actors, Products, and Services
- Authors: Aspen Hopkins, Sarah H. Cen, Andrew Ilyas, Isabella Struckman, Luis Videgaray, Aleksander MÄ…dry,
- Abstract summary: We take a first step toward a formal study of AI supply chains and their implications.<n>We show two illustrative case studies indicating that both AI development and regulation are complicated in the presence of supply chains.<n>Our findings motivate further study of AI supply chains and their increasingly salient social, economic, regulatory, and technical implications.
- Score: 45.66861360191072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of AI in recent years has led to the emergence of AI supply chains: complex networks of AI actors contributing models, datasets, and more to the development of AI products and services. AI supply chains have many implications yet are poorly understood. In this work, we take a first step toward a formal study of AI supply chains and their implications, providing two illustrative case studies indicating that both AI development and regulation are complicated in the presence of supply chains. We begin by presenting a brief historical perspective on AI supply chains, discussing how their rise reflects a longstanding shift towards specialization and outsourcing that signals the healthy growth of the AI industry. We then model AI supply chains as directed graphs and demonstrate the power of this abstraction by connecting examples of AI issues to graph properties. Finally, we examine two case studies in detail, providing theoretical and empirical results in both. In the first, we show that information passing (specifically, of explanations) along the AI supply chains is imperfect, which can result in misunderstandings that have real-world implications. In the second, we show that upstream design choices (e.g., by base model providers) have downstream consequences (e.g., on AI products fine-tuned on the base model). Together, our findings motivate further study of AI supply chains and their increasingly salient social, economic, regulatory, and technical implications.
Related papers
- The AI Pentad, the CHARME$^{2}$D Model, and an Assessment of Current-State AI Regulation [5.231576332164012]
This paper aims to establish a unifying model for AI regulation from the perspective of core AI components.<n>We first introduce the AI Pentad, which comprises the five essential components of AI.<n>We then review AI regulatory enablers, including AI registration and disclosure, AI monitoring, and AI enforcement mechanisms.
arXiv Detail & Related papers (2025-03-08T22:58:41Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - SoK: Decentralized AI (DeAI) [4.651101982820699]
We present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions.<n>Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols.<n>We investigate how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes.
arXiv Detail & Related papers (2024-11-26T14:28:25Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.<n>First, it is not sustainable, as, despite efficiency improvements, its compute demands increase faster than model performance.<n>Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Compliance Cards: Automated EU AI Act Compliance Analyses amidst a Complex AI Supply Chain [9.991293429067065]
We introduce a complete system for provider-side AIA compliance analyses amidst a complex AI supply chain.
First is an interlocking set of computational, multi-stakeholder transparency artifacts that capture AIA-specific metadata about both.
Second is an algorithm that operates across all those artifacts to render a real-time prediction about whether or not the aggregate AI system or model complies with the AIA.
arXiv Detail & Related papers (2024-06-20T22:07:15Z) - Visions of a Discipline: Analyzing Introductory AI Courses on YouTube [11.209406323898019]
We analyze the 20 most watched introductory AI courses on YouTube.
Introductory AI courses do not meaningfully engage with ethical or societal challenges of AI.
We recommend that introductory AI courses should highlight ethical challenges of AI to present a more balanced perspective.
arXiv Detail & Related papers (2024-05-31T01:48:42Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Artificial intelligence and the transformation of higher education
institutions [0.0]
This article develops a causal loop diagram (CLD) to map the causal feedback mechanisms of AI transformation in a typical HEI.
Our model accounts for the forces that drive the AI transformation and the consequences of the AI transformation on value creation in a typical HEI.
The article identifies and analyzes several reinforcing and balancing feedback loops, showing how the HEI invests in AI to improve student learning, research, and administration.
arXiv Detail & Related papers (2024-02-13T00:36:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.