論文の概要: Can Large Language Models Learn Formal Logic? A Data-Driven Training and Evaluation Framework
- arxiv url: http://arxiv.org/abs/2504.20213v1
- Date: Mon, 28 Apr 2025 19:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.652645
- Title: Can Large Language Models Learn Formal Logic? A Data-Driven Training and Evaluation Framework
- Title(参考訳): 大規模言語モデルは形式論理を学習できるか? データ駆動型トレーニングと評価フレームワーク
- Authors: Yuan Xia, Akanksha Atrey, Fadoua Khmaissia, Kedar S. Namjoshi,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の論理的推論能力について検討する。
訓練されたLLMは、一連の仮定とゴールを入力として受け取り、その仮定からゴールを正式に導出する証明を出力として生成する。
トレーニングにとって重要な障害は、現実世界の証明が不足していることだ。
- 参考スコア(独自算出の注目度): 2.9334627971166336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the logical reasoning capabilities of large language models (LLMs). For a precisely defined yet tractable formulation, we choose the conceptually simple but technically complex task of constructing proofs in Boolean logic. A trained LLM receives as input a set of assumptions and a goal, and produces as output a proof that formally derives the goal from the assumptions. Incorrect proofs are caught by an automated proof checker. A critical obstacle for training is the scarcity of real-world proofs. We propose an efficient, randomized procedure for synthesizing valid proofs and introduce Template Transformation, a data augmentation technique that enhances the model's ability to handle complex logical expressions. The central evaluation question is whether an LLM has indeed learned to reason. We propose tests to measure the reasoning ability of a black-box LLM. By these measures, experiments demonstrate strong reasoning capabilities for assertions with short proofs, which decline with proof complexity. Notably, template transformation improves accuracy even for smaller models, suggesting its effectiveness across model scales.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の論理的推論能力について検討する。
正確に定義されたが、抽出可能な定式化に対しては、ブール論理の証明を構成する概念的に単純だが技術的に複雑なタスクを選択する。
訓練されたLLMは、一連の仮定とゴールを入力として受け取り、その仮定からゴールを正式に導出する証明を出力として生成する。
不正な証明は自動証明チェッカーによって捕捉される。
トレーニングにとって重要な障害は、現実世界の証明が不足していることだ。
本稿では,有効な証明を合成する効率的なランダム化手法を提案し,複雑な論理式を扱う能力を高めるデータ拡張手法であるテンプレート変換を提案する。
中心的な評価問題は、LLMが実際に理性を学んだかどうかである。
ブラックボックスLSMの推論能力を測定するための試験を提案する。
これらの測定により、実験は証明の複雑さによって減少する短い証明を持つアサーションに対して強い推論能力を示す。
特に、テンプレート変換は、小さなモデルであっても精度を向上し、モデルスケール全体での有効性を示唆している。
関連論文リスト
- Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation [27.60611509339328]
1つのトレーニングデータサンプルの最適順序は、特定の証明ステップの関連中間監督が、その証明ステップの左側に常に配置されているときに発生すると論じる。
証明が直感的に逐次順序にある場合、トレーニングが最も効果的であることを示す。
論文 参考訳(メタデータ) (2024-10-30T18:00:04Z) - P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
P-FOLIO(P-FOLIO)は、多種多様で複雑な推論連鎖からなる人称注釈付きデータセットである。
我々はP-FOLIOを用いて大規模言語モデル推論機能の評価と改善を行う。
論文 参考訳(メタデータ) (2024-10-11T19:22:57Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
証明の各ステップに先立って,非公式な思考を生成するために,言語モデルをトレーニングするフレームワークであるLean-STaRを紹介します。
Lean-STaRは、Lean定理証明環境内のminiF2F-testベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T01:43:07Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARDは、高品質で多様性のある定理と証明データの均一な合成をマスターするフレームワークである。
5,866個の有効なデータポイントを持つMUSTARDSAUCEベンチマークを示す。
我々は広範囲な解析を行い、MUSTARDが検証された高品質なステップバイステップデータを生成することを示す。
論文 参考訳(メタデータ) (2024-02-14T05:57:58Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - LAMBADA: Backward Chaining for Automated Reasoning in Natural Language [11.096348678079574]
LAMBADAと呼ばれる逆チェインアルゴリズムは、推論を4つのサブモジュールに分解する。
LAMBADAは最先端のフォワード推論手法よりも精度が向上することを示す。
論文 参考訳(メタデータ) (2022-12-20T18:06:03Z) - Language Models Are Greedy Reasoners: A Systematic Formal Analysis of
Chain-of-Thought [10.524051272257614]
大規模言語モデル(LLM)は、チェーン・オブ・シークレット・プロンプトが与えられた顕著な推論能力を示している。
本稿では, PrOntoQAと呼ばれる合成質問応答データセットを提案し, それぞれの例を合成世界モデルとして生成する。
これにより、生成された連鎖を形式解析の象徴的な証明に解析することができる。
論文 参考訳(メタデータ) (2022-10-03T21:34:32Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
大規模な事前学習言語モデル(LM)は推論能力を得るが、制御は困難である。
本研究では,暗黙的,事前学習された知識と明示的な自然言語文を併用して,体系的推論を確実に行うことができることを示す。
我々の研究は、シンプルな自然言語文を追加することで、モデルを簡単に修正できるユーザと対話することで、常に改善されるオープンドメインシステムへの道を開く。
論文 参考訳(メタデータ) (2020-06-11T17:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。