論文の概要: DRO: Doppler-Aware Direct Radar Odometry
- arxiv url: http://arxiv.org/abs/2504.20339v1
- Date: Tue, 29 Apr 2025 01:20:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.706495
- Title: DRO: Doppler-Aware Direct Radar Odometry
- Title(参考訳): DRO:ドップラー対応直接レーダーオドメトリー
- Authors: Cedric Le Gentil, Leonardo Brizi, Daniil Lisus, Xinyuan Qiao, Giorgio Grisetti, Timothy D. Barfoot,
- Abstract要約: 移動ロボットアプリケーションのためのレーダーによるセンシングのルネッサンスが進行中である。
スピン周波数変調連続波レーダのための新しいSE(2)オドメトリー手法を提案する。
提案手法は,公開データセットから250km以上のオンロードデータに対して検証されている。
- 参考スコア(独自算出の注目度): 11.042292216861762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A renaissance in radar-based sensing for mobile robotic applications is underway. Compared to cameras or lidars, millimetre-wave radars have the ability to `see' through thin walls, vegetation, and adversarial weather conditions such as heavy rain, fog, snow, and dust. In this paper, we propose a novel SE(2) odometry approach for spinning frequency-modulated continuous-wave radars. Our method performs scan-to-local-map registration of the incoming radar data in a direct manner using all the radar intensity information without the need for feature or point cloud extraction. The method performs locally continuous trajectory estimation and accounts for both motion and Doppler distortion of the radar scans. If the radar possesses a specific frequency modulation pattern that makes radial Doppler velocities observable, an additional Doppler-based constraint is formulated to improve the velocity estimate and enable odometry in geometrically feature-deprived scenarios (e.g., featureless tunnels). Our method has been validated on over 250km of on-road data sourced from public datasets (Boreas and MulRan) and collected using our automotive platform. With the aid of a gyroscope, it outperforms state-of-the-art methods and achieves an average relative translation error of 0.26% on the Boreas leaderboard. When using data with the appropriate Doppler-enabling frequency modulation pattern, the translation error is reduced to 0.18% in similar environments. We also benchmarked our algorithm using 1.5 hours of data collected with a mobile robot in off-road environments with various levels of structure to demonstrate its versatility. Our real-time implementation is publicly available: https://github.com/utiasASRL/dro.
- Abstract(参考訳): 移動ロボットアプリケーションのためのレーダーによるセンシングのルネッサンスが進行中である。
カメラやライダーと比較すると、ミリ波レーダーは薄い壁、植生、大雨、霧、雪、塵のような敵の気象条件を「見る」ことができる。
本稿では,周波数変調連続波レーダのための新しいSE(2)オドメトリー手法を提案する。
本手法は, 特徴や点雲の抽出を必要とせず, 全レーダー強度情報を用いて, 直接的に受信レーダデータのスキャン・ツー・ローカルマップ登録を行う。
本手法は, 局所連続軌道推定を行い, レーダスキャンの運動歪みとドップラー歪みの両方を考慮した。
レーダに放射状ドップラー速度を観測できる特定の周波数変調パターンがある場合、ドップラーに基づく追加の制約が定式化され、速度推定を改善し、幾何学的に特徴を欠いたシナリオ(例えば、特徴のないトンネル)におけるオードメトリーを可能にする。
我々の手法は、公開データセット(BoreasとMulRan)から得られた250km以上のオンロードデータに基づいて検証され、我々の自動車プラットフォームを用いて収集された。
ジャイロスコープの助けを借りて、最先端の手法より優れ、ボレアスのリーダーボード上での平均相対翻訳誤差は0.26%に達する。
適切なドップラー発振周波数変調パターンを持つデータを使用する場合、同様の環境では変換誤差が0.18%に削減される。
また,オフロード環境における移動ロボットによる1.5時間データを用いたアルゴリズムのベンチマークを行い,その汎用性を実証した。
私たちのリアルタイム実装は、https://github.com/utiasASRL/dro.comで公開されています。
関連論文リスト
- TacoDepth: Towards Efficient Radar-Camera Depth Estimation with One-stage Fusion [54.46664104437454]
一段核融合を用いた効率的かつ正確なレーダ・カメラ深度推定モデルであるTacoDepthを提案する。
具体的には、グラフベースのRadar構造抽出器とピラミッドベースのRadar融合モジュールを設計する。
従来の最先端のアプローチと比較して、TacoDepthは深さ精度と処理速度を12.8%、91.8%改善している。
論文 参考訳(メタデータ) (2025-04-16T05:25:04Z) - Simulating Automotive Radar with Lidar and Camera Inputs [14.196071603770251]
低コストのミリメートルレーダーは、自動運転車の悪天候や照明条件に対処する能力により、ますます注目を集めている。
本稿では,4次元ミリ波レーダ信号のシミュレートをカメラ画像,光検出・測光(ライダー)点雲,エゴ速度を用いて行う新しい手法を提案する。
論文 参考訳(メタデータ) (2025-03-11T05:59:43Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
ミリ波レーダセンサは、環境条件下では安定した性能を維持している。
レーダー点雲は比較的希薄で、巨大なゴーストポイントを含んでいる。
本稿では3次元ミリ波レーダデータに対する新しい点雲超解像法,Radar-diffusionを提案する。
論文 参考訳(メタデータ) (2024-04-09T04:41:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Radar Artifact Labeling Framework (RALF): Method for Plausible Radar
Detections in Datasets [2.5899040911480187]
粗いレーダ点雲のラベル付けのためのクロスセンサレーダアーチファクトラベルフレームワーク(RALF)を提案する。
RALFは、レーダーの生検出のための可視性ラベルを提供し、アーティファクトとターゲットを区別する。
半手動ラベル付き地上真理データセットの3.28cdot106$ポイントの誤差測定値を評価することにより,結果を検証する。
論文 参考訳(メタデータ) (2020-12-03T15:11:31Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。