論文の概要: Automated Unit Test Case Generation: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2504.20357v1
- Date: Tue, 29 Apr 2025 01:50:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.719798
- Title: Automated Unit Test Case Generation: A Systematic Literature Review
- Title(参考訳): 自動ユニットテストケース生成: 体系的文献レビュー
- Authors: Jason Wang, Basem Suleiman, Muhammad Johan Alibasa,
- Abstract要約: このレビューは、進化的アプローチとそれらの改善と結果として生じる限界に関して、既存の知識を統合することを目的としている。
これらのアルゴリズムで使用される主要なテスト基準と、可読性やモックなどに関わる分野で現在直面している課題について検討する。
- 参考スコア(独自算出の注目度): 2.273531916003657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software is omnipresent within all factors of society. It is thus important to ensure that software are well tested to mitigate bad user experiences as well as the potential for severe financial and human losses. Software testing is however expensive and absorbs valuable time and resources. As a result, the field of automated software testing has grown of interest to researchers in past decades. In our review of present and past research papers, we have identified an information gap in the areas of improvement for the Genetic Algorithm and Particle Swarm Optimisation. A gap in knowledge in the current challenges that face automated testing has also been identified. We therefore present this systematic literature review in an effort to consolidate existing knowledge in regards to the evolutionary approaches as well as their improvements and resulting limitations. These improvements include hybrid algorithm combinations as well as interoperability with mutation testing and neural networks. We will also explore the main test criterion that are used in these algorithms alongside the challenges currently faced in the field related to readability, mocking and more.
- Abstract(参考訳): ソフトウェアは社会のあらゆる要素において一様である。
したがって、ソフトウェアが悪質なユーザー体験を軽減し、財政的、人的損失を深刻に軽減するために十分にテストされていることを保証することが重要である。
しかし、ソフトウェアテストは高価であり、貴重な時間とリソースを吸収します。
その結果、自動ソフトウェアテストの分野は、過去数十年間、研究者にとって大きな関心を集めてきた。
我々は,現在および過去の研究論文のレビューにおいて,遺伝的アルゴリズムと粒子群最適化の改善領域における情報ギャップを明らかにした。
自動テストに直面する現在の課題における知識のギャップも特定されている。
そこで本研究では,進化的アプローチと改良,その結果の限界に関して,既存の知識を統合化するための体系的な文献レビューを提案する。
これらの改善には、ハイブリッドアルゴリズムの組み合わせと、突然変異テストとニューラルネットワークとの相互運用性が含まれる。
これらのアルゴリズムで使用される主要なテスト基準についても,可読性やモックなどに関わる領域で現在直面している課題と合わせて検討する。
関連論文リスト
- Requirements-Driven Automated Software Testing: A Systematic Review [13.67495800498868]
本研究では,REDAST研究の現状を整理し,今後の方向性について考察する。
この体系的な文献レビュー(SLR)は、要求入力、変換技術、テスト結果、評価方法、既存の制限を分析して、REDASTの展望を探求する。
論文 参考訳(メタデータ) (2025-02-25T23:13:09Z) - The Future of Software Testing: AI-Powered Test Case Generation and Validation [0.0]
本稿では、テストケースの生成と検証を改善する上で、AIが持つ変革の可能性について考察する。
テストプロセスの効率性、正確性、スケーラビリティを高める能力に重点を置いている。
また、高品質なトレーニングデータの必要性など、テストにAIを適用する際の重要な課題にも対処している。
論文 参考訳(メタデータ) (2024-09-09T17:12:40Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
人工知能(AI)と機械学習(ML)は様々な産業に大きな影響を与えている。
ソフトウェア開発ライフサイクル(SDLC)の重要な部分であるソフトウェアテストは、ソフトウェア製品の品質と信頼性を保証する。
本稿では、既存の文献をレビューし、現在のツールや技術を分析し、ケーススタディを提示することで、ソフトウェアテストにおけるAIとMLの役割について考察する。
論文 参考訳(メタデータ) (2024-09-04T13:25:13Z) - AutoSurvey: Large Language Models Can Automatically Write Surveys [77.0458309675818]
本稿では,総合的な文献調査を自動作成する手法であるAutoSurveyを紹介する。
従来の調査論文は、膨大な量の情報と複雑さのために、課題に直面している。
我々の貢献には、調査問題に対する総合的な解決策、信頼性評価方法、AutoSurveyの有効性を実証する実験的な検証が含まれる。
論文 参考訳(メタデータ) (2024-06-10T12:56:06Z) - Software Testing of Generative AI Systems: Challenges and Opportunities [5.634825161148484]
生成的AIシステムによってもたらされる課題について検討し、テスト分野における将来の研究機会について論じる。
従来のテスト技術が不十分あるいは不十分なGenAIシステムの特徴について触れます。
論文 参考訳(メタデータ) (2023-09-07T08:35:49Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - Constrained Adversarial Learning and its applicability to Automated
Software Testing: a systematic review [0.0]
この体系的なレビューは、敵の学習やソフトウェアテストに適用される制約付きデータ生成手法の現状に焦点を当てている。
研究者や開発者に対して、敵対的な学習方法によるテストツールの強化と、ディジタルシステムのレジリエンスと堅牢性の向上を指導することを目的としている。
論文 参考訳(メタデータ) (2023-03-14T00:27:33Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
本稿では,BioSecure DS2 (Access Control) 評価キャンペーンの枠組み内で実施したベンチマーク研究について報告する。
キャンペーンは、約500人の中規模施設における物理的アクセス制御の適用を目標とした。
我々の知る限りでは、これは品質ベースのマルチモーダル融合アルゴリズムをベンチマークする最初の試みである。
論文 参考訳(メタデータ) (2021-11-17T13:39:48Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。