Manifold Clustering with Schatten p-norm Maximization
- URL: http://arxiv.org/abs/2504.20390v1
- Date: Tue, 29 Apr 2025 03:23:06 GMT
- Title: Manifold Clustering with Schatten p-norm Maximization
- Authors: Fangfang Li, Quanxue Gao,
- Abstract summary: We develop a new clustering framework based on manifold clustering.<n>Specifically, the algorithm uses labels to guide the manifold structure and perform clustering on it.<n>In order to naturally maintain the class balance in the clustering process, we maximize the Schatten p-norm of labels.
- Score: 16.90743611125625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manifold clustering, with its exceptional ability to capture complex data structures, holds a pivotal position in cluster analysis. However, existing methods often focus only on finding the optimal combination between K-means and manifold learning, and overlooking the consistency between the data structure and labels. To address this issue, we deeply explore the relationship between K-means and manifold learning, and on this basis, fuse them to develop a new clustering framework. Specifically, the algorithm uses labels to guide the manifold structure and perform clustering on it, which ensures the consistency between the data structure and labels. Furthermore, in order to naturally maintain the class balance in the clustering process, we maximize the Schatten p-norm of labels, and provide a theoretical proof to support this. Additionally, our clustering framework is designed to be flexible and compatible with many types of distance functions, which facilitates efficient processing of nonlinear separable data. The experimental results of several databases confirm the superiority of our proposed model.
Related papers
- Hierarchical clustering with maximum density paths and mixture models [39.42511559155036]
Hierarchical clustering is an effective and interpretable technique for analyzing structure in data.<n>It is particularly helpful in settings where the exact number of clusters is unknown, and provides a robust framework for exploring complex datasets.<n>Our method addresses this limitation by leveraging a two-stage approach, first employing a Gaussian or Student's t mixture model to overcluster the data, and then hierarchically merging clusters based on the induced density landscape.<n>This approach yields state-of-the-art clustering performance while also providing a meaningful hierarchy, making it a valuable tool for exploratory data analysis.
arXiv Detail & Related papers (2025-03-19T15:37:51Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
arXiv Detail & Related papers (2024-03-11T09:46:41Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
Clustering is a powerful and extensively used data science tool.
In this article, we define a generalized optimization framework for predictive clustering.
We also present a joint optimization strategy that exploits mixed-integer linear programming (MILP) for global optimization.
arXiv Detail & Related papers (2023-05-07T19:56:51Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.