Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images
- URL: http://arxiv.org/abs/2506.11377v1
- Date: Thu, 12 Jun 2025 16:43:09 GMT
- Title: Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images
- Authors: Xianlu Li, Nicolas Nadisic, Shaoguang Huang, Nikos Deligiannis, Aleksandra Pižurica,
- Abstract summary: Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs)<n>Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n2), followed by spectral clustering.<n>We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering.
- Score: 51.95768218975529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs). Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n^2), followed by spectral clustering. However, these methods are computationally intensive, generally incorporating solely either local or non-local spatial structure constraints, and their structural constraints fall short of effectively supervising the entire clustering process. We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering. To preserve local structure (i.e., spatial continuity within subspaces), we introduce a spatial smoothness constraint that aligns clustering predictions with their spatially filtered versions. For non-local structure (i.e., spectral continuity), we employ a mini-cluster-based scheme that refines predictions at the group level, encouraging spectrally similar pixels to belong to the same subspace. Notably, these two constraints are jointly optimized to reinforce each other. Specifically, our model is designed as an one-stage approach in which the structural constraints are applied to the entire clustering process. The time and space complexity of our method is O(n), making it applicable to large-scale HSI data. Experiments on real-world datasets show that our method outperforms state-of-the-art techniques. Our code is available at: https://github.com/lxlscut/SCDSC
Related papers
- Hierarchical clustering with maximum density paths and mixture models [44.443538161979056]
t-NEB is a probabilistically grounded hierarchical clustering method.<n>It yields state-of-the-art clustering performance on naturalistic high-dimensional data.
arXiv Detail & Related papers (2025-03-19T15:37:51Z) - Graph Probability Aggregation Clustering [5.377020739388736]
We propose a graph-based fuzzy clustering algorithm that unifies the global clustering objective function with a local clustering constraint.<n>The entire GPAC framework is formulated as a multi-constrained optimization problem, which can be solved using the Lagrangian method.<n>Experiments conducted on synthetic, real-world, and deep learning datasets demonstrate that GPAC not only exceeds existing state-of-the-art methods in clustering performance but also excels in computational efficiency.
arXiv Detail & Related papers (2025-02-27T09:11:32Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
We present Semi-supervised clustering via Structural Entropy (SSE), a novel method that can incorporate different types of constraints from diverse sources to perform both partitioning and hierarchical clustering.
We evaluate SSE on nine clustering datasets and compare it with eleven semi-supervised partitioning and hierarchical clustering methods.
arXiv Detail & Related papers (2023-12-18T04:00:40Z) - Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent [46.86939432189035]
We propose Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent.
Our proposed model consistently outperforms the state-of-the-art techniques.
arXiv Detail & Related papers (2023-10-11T03:29:13Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.<n>IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image [6.332208511335129]
We present a novel subspace clustering framework called Graph Convolutional Subspace Clustering (GCSC) for robust HSI clustering.
Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain.
We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data.
arXiv Detail & Related papers (2020-04-22T10:09:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.