論文の概要: Learning Laplacian Positional Encodings for Heterophilous Graphs
- arxiv url: http://arxiv.org/abs/2504.20430v1
- Date: Tue, 29 Apr 2025 04:58:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.756114
- Title: Learning Laplacian Positional Encodings for Heterophilous Graphs
- Title(参考訳): 異種グラフのためのラプラシアン位置符号化の学習
- Authors: Michael Ito, Jiong Zhu, Dexiong Chen, Danai Koutra, Jenna Wiens,
- Abstract要約: LLPE(Learable Laplacian Positional distances)は、新しいグラフ位置符号化法である。
LLPEはホモフィルグラフとヘテロフィルグラフの両方のグラフ構造をキャプチャする。
実験により, LLPE は GNN の精度を向上させることが実証された。
- 参考スコア(独自算出の注目度): 23.47418689038948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we theoretically demonstrate that current graph positional encodings (PEs) are not beneficial and could potentially hurt performance in tasks involving heterophilous graphs, where nodes that are close tend to have different labels. This limitation is critical as many real-world networks exhibit heterophily, and even highly homophilous graphs can contain local regions of strong heterophily. To address this limitation, we propose Learnable Laplacian Positional Encodings (LLPE), a new PE that leverages the full spectrum of the graph Laplacian, enabling them to capture graph structure on both homophilous and heterophilous graphs. Theoretically, we prove LLPE's ability to approximate a general class of graph distances and demonstrate its generalization properties. Empirically, our evaluation on 12 benchmarks demonstrates that LLPE improves accuracy across a variety of GNNs, including graph transformers, by up to 35% and 14% on synthetic and real-world graphs, respectively. Going forward, our work represents a significant step towards developing PEs that effectively capture complex structures in heterophilous graphs.
- Abstract(参考訳): 本研究では,現在のグラフ位置エンコーディング(PE)が有用ではなく,近いノードが異なるラベルを持つヘテロ親和性グラフを含むタスクのパフォーマンスを損なう可能性があることを理論的に示す。
この制限は、多くの実世界のネットワークがヘテロフィリーを示しており、高度にホモフィラスなグラフでさえ強いヘテロフィリーの局所領域を含むことができるため、批判的である。
この制限に対処するため,Learnerable Laplacian Positional Encodings (LLPE) を提案する。
理論的には、LLPEがグラフ距離の一般クラスを近似する能力を証明し、その一般化特性を実証する。
実験により, LLPEはグラフ変換器を含むGNNの精度を, 合成グラフと実世界のグラフで最大35%, 14%向上することを示した。
今後の研究は、異種グラフの複雑な構造を効果的にキャプチャするPEを開発するための重要なステップとなる。
関連論文リスト
- When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
非教師付きヘテロジニアスグラフ表現学習(UHGRL)は,ラベルのない実用的なグラフを扱うことの重要性から注目されている。
我々はセマンティックなヘテロフィリーを定義し、この問題に対処するためにLatGRL(Latent Graphs Guided Unsupervised Representation Learning)と呼ばれる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-01T10:25:06Z) - Graph Distillation with Eigenbasis Matching [43.59076214528843]
実グラフの代わりに固有基底マッチング(GDEM)を用いたグラフ蒸留を提案する。
GDEMは実グラフと合成グラフの固有基底とノード特徴を整列する。
実グラフのスペクトルを直接再現することで、GNNの影響を防止できる。
論文 参考訳(メタデータ) (2023-10-13T15:48:12Z) - Permutation Equivariant Graph Framelets for Heterophilous Graph Learning [6.679929638714752]
本研究では,Haar型グラフフレームレットの構築により,マルチスケール抽出を実現する手法を開発した。
ヘテロ親和性グラフの特定のデータセット上で,我々のモデルが最高の性能を達成できることが示される。
論文 参考訳(メタデータ) (2023-06-07T09:05:56Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
グラフコントラッシブ・ラーニング(GCL)技術は通常、コントラッシブ・ロスを構築するために単一のインスタンスに対して2つのフォワードパスを必要とする。
既存のGCLアプローチは、強力なパフォーマンス保証を提供していない。
我々はSingle-Pass Graph Contrastive Learning法(SP-GCL)を実装した。
経験的に、SP-GCLが学んだ機能は、計算オーバーヘッドを著しく少なくして、既存の強いベースラインにマッチまたは性能を向上することができる。
論文 参考訳(メタデータ) (2022-11-20T07:18:56Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Heterogeneous Graph Transformer [49.675064816860505]
Webスケールの不均一グラフモデリングのための不均一グラフ変換器(HGT)アーキテクチャ
動的ヘテロジニアスグラフを扱うために、HGTに相対時間符号化手法を導入する。
Web スケールのグラフデータを扱うため,ヘテロジニアスなミニバッチグラフサンプリングアルゴリズム--HGSampling--を設計し,効率的かつスケーラブルなトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-03T04:49:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。