Inclusive Training Separation and Implicit Knowledge Interaction for Balanced Online Class-Incremental Learning
- URL: http://arxiv.org/abs/2504.20566v1
- Date: Tue, 29 Apr 2025 09:13:00 GMT
- Title: Inclusive Training Separation and Implicit Knowledge Interaction for Balanced Online Class-Incremental Learning
- Authors: Shunjie Wen, Thomas Heinis, Dong-Wan Choi,
- Abstract summary: Online class-incremental learning (OCIL) focuses on gradually learning new classes (called plasticity) from a stream of data in a single-pass.<n>The primary challenge in OCIL lies in maintaining a good balance between the knowledge of old and new classes.<n>We propose a novel replay-based method, called Balanced Online Incremental Learning (BOIL), which can achieve both high plasticity and stability.
- Score: 6.2792786251529575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online class-incremental learning (OCIL) focuses on gradually learning new classes (called plasticity) from a stream of data in a single-pass, while concurrently preserving knowledge of previously learned classes (called stability). The primary challenge in OCIL lies in maintaining a good balance between the knowledge of old and new classes within the continually updated model. Most existing methods rely on explicit knowledge interaction through experience replay, and often employ exclusive training separation to address bias problems. Nevertheless, it still remains a big challenge to achieve a well-balanced learner, as these methods often exhibit either reduced plasticity or limited stability due to difficulties in continually integrating knowledge in the OCIL setting. In this paper, we propose a novel replay-based method, called Balanced Online Incremental Learning (BOIL), which can achieve both high plasticity and stability, thus ensuring more balanced performance in OCIL. Our BOIL method proposes an inclusive training separation strategy using dual classifiers so that knowledge from both old and new classes can effectively be integrated into the model, while introducing implicit approaches for transferring knowledge across the two classifiers. Extensive experimental evaluations over three widely-used OCIL benchmark datasets demonstrate the superiority of BOIL, showing more balanced yet better performance compared to state-of-the-art replay-based OCIL methods.
Related papers
- DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning [23.878495627964146]
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human.<n>Existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models.<n>In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE.
arXiv Detail & Related papers (2024-11-28T13:54:01Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Strike a Balance in Continual Panoptic Segmentation [60.26892488010291]
We introduce past-class backtrace distillation to balance the stability of existing knowledge with the adaptability to new information.
We also introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data.
We present a new method named Continual Panoptic Balanced (BalConpas)
arXiv Detail & Related papers (2024-07-23T09:58:20Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
arXiv Detail & Related papers (2024-02-28T18:08:03Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - New Insights on Relieving Task-Recency Bias for Online Class Incremental
Learning [37.888061221999294]
In all settings, the online class incremental learning (OCIL) is more challenging and can be encountered more frequently in real world.
To strike a preferable trade-off between stability and plasticity, we propose an Adaptive Focus Shifting algorithm.
arXiv Detail & Related papers (2023-02-16T11:52:00Z) - Adaptively Integrated Knowledge Distillation and Prediction Uncertainty
for Continual Learning [71.43841235954453]
Current deep learning models often suffer from catastrophic forgetting of old knowledge when continually learning new knowledge.
Existing strategies to alleviate this issue often fix the trade-off between keeping old knowledge (stability) and learning new knowledge (plasticity)
arXiv Detail & Related papers (2023-01-18T05:36:06Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.