論文の概要: The Hidden Risks of LLM-Generated Web Application Code: A Security-Centric Evaluation of Code Generation Capabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2504.20612v1
- Date: Tue, 29 Apr 2025 10:23:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.845353
- Title: The Hidden Risks of LLM-Generated Web Application Code: A Security-Centric Evaluation of Code Generation Capabilities in Large Language Models
- Title(参考訳): LLM生成Webアプリケーションコードの隠れリスク:大規模言語モデルにおけるコード生成能力のセキュリティ中心評価
- Authors: Swaroop Dora, Deven Lunkad, Naziya Aslam, S. Venkatesan, Sandeep Kumar Shukla,
- Abstract要約: 本稿では,複数のモデルにまたがるLLM生成コードのセキュリティコンプライアンスを評価するために,予め定義されたセキュリティパラメータを用いる。
この分析は、認証機構、セッション管理、入力バリデーション、HTTPセキュリティヘッダに重大な脆弱性を明らかにしている。
我々の発見は、LLM生成コードのセキュアなソフトウェアデプロイメントやレビューのために、人間の専門知識が不可欠であることを示している。
- 参考スコア(独自算出の注目度): 0.769672852567215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has enhanced software development processes, minimizing the time and effort required for coding and enhancing developer productivity. However, despite their potential benefits, code generated by LLMs has been shown to generate insecure code in controlled environments, raising critical concerns about their reliability and security in real-world applications. This paper uses predefined security parameters to evaluate the security compliance of LLM-generated code across multiple models, such as ChatGPT, DeepSeek, Claude, Gemini and Grok. The analysis reveals critical vulnerabilities in authentication mechanisms, session management, input validation and HTTP security headers. Although some models implement security measures to a limited extent, none fully align with industry best practices, highlighting the associated risks in automated software development. Our findings underscore that human expertise is crucial to ensure secure software deployment or review of LLM-generated code. Also, there is a need for robust security assessment frameworks to enhance the reliability of LLM-generated code in real-world applications.
- Abstract(参考訳): LLM(Large Language Models)の急速な進歩により、ソフトウェア開発プロセスが強化され、コーディングに必要な時間と労力が最小化され、開発者の生産性が向上する。
しかし、その潜在的な利点にもかかわらず、LLMによって生成されたコードは、制御された環境で安全でないコードを生成することが示され、現実世界のアプリケーションにおける信頼性とセキュリティに関する重要な懸念が持ち上がっている。
本稿では、事前に定義されたセキュリティパラメータを用いて、ChatGPT、DeepSeek、Claude、Gemini、Grokといった複数のモデルにわたるLLM生成コードのセキュリティコンプライアンスを評価する。
この分析は、認証機構、セッション管理、入力バリデーション、HTTPセキュリティヘッダに重大な脆弱性を明らかにしている。
セキュリティ対策を限られた範囲で実施するモデルもあるが、自動化ソフトウェア開発におけるリスクを浮き彫りにして、業界のベストプラクティスと完全に一致するものはない。
我々の発見は、LLM生成コードのセキュアなソフトウェアデプロイメントやレビューのために、人間の専門知識が不可欠であることを示している。
また、現実のアプリケーションにおけるLLM生成コードの信頼性を高めるために、堅牢なセキュリティアセスメントフレームワークが必要である。
関連論文リスト
- CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation [20.72188827088484]
大規模言語モデル(LLM)は、コード記述の生成や支援によって、開発者を大いに助けている。
機能的に正しいコードの脆弱性を検出することは、特にセキュリティ知識が限られている開発者にとっては、より難しい。
我々は、LLMによるセキュアコード生成の評価を強化するために、新しい結果駆動型評価フレームワークであるCWEvalを紹介する。
論文 参考訳(メタデータ) (2025-01-14T15:27:01Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing [6.334110674473677]
既存のアプローチは、セキュアで脆弱性のないコードを生成するのに苦労するコード生成に、単一のエージェントに依存することが多い。
コード生成,脆弱性解析,セキュリティ強化にLLM駆動エージェントを活用するマルチエージェントフレームワークであるAutoSafeCoderを提案する。
私たちのコントリビューションは、コード生成中に反復的なプロセスで動的および静的なテストを統合することで、マルチエージェントコード生成の安全性を確保することに焦点を当てています。
論文 参考訳(メタデータ) (2024-09-16T21:15:56Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。