論文の概要: TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
- arxiv url: http://arxiv.org/abs/2504.20658v1
- Date: Tue, 29 Apr 2025 11:33:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.871133
- Title: TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
- Title(参考訳): TrueFake: ソーシャルネットワーク上で共有される最後の世代のフェイク画像の実例データセット
- Authors: Stefano Dell'Anna, Andrea Montibeller, Giulia Boato,
- Abstract要約: 我々は600,000画像の大規模ベンチマークデータセットであるTrueFakeを紹介する。
このデータセットは、非常に現実的で困難な条件下で、最先端の偽画像検出器の厳密な評価を可能にする。
ソーシャルメディアの共有が検出性能に与える影響を分析し、現在最も効果的な検出およびトレーニング戦略を特定する。
- 参考スコア(独自算出の注目度): 0.9870503213194768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
- Abstract(参考訳): AIが生成する合成メディアは、しばしば偽情報やプロパガンダをソーシャルメディアプラットフォームに広めることを目的として、現実世界のシナリオでますます利用されている。
現在、多くの法医学ツールは、これらの未解決の課題を説明できない。
本稿では,トップノッチ生成技術や3つのソーシャルネットワークによる共有を含む60,000画像の大規模ベンチマークデータセットであるTrueFakeを紹介する。
このデータセットは、非常に現実的で困難な条件下で、最先端の偽画像検出器の厳密な評価を可能にする。
大規模な実験を通じて,ソーシャルメディアの共有が検出性能に与える影響を分析し,現在最も効果的な検出・訓練戦略を特定する。
本研究は,現実世界の使用を反映した条件下での法医学的モデルの評価の必要性を強調した。
関連論文リスト
- FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
本稿では,AIによる画像鑑定に適した専門家マルチモーダルモデル(LMM)であるFakeScopeを提案する。
FakeScopeはAI合成画像を高精度に識別し、リッチで解釈可能なクエリ駆動の法医学的な洞察を提供する。
FakeScopeは、クローズドエンドとオープンエンドの両方の法医学的シナリオで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-31T16:12:48Z) - Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation [15.442558725312976]
本稿では,一般的な合成画像とDeepFake検出タスクの両方を対象とした,大規模マルチモーダルモデルであるFakeVLMを紹介する。
FakeVLMは、本物と偽のイメージを区別し、画像アーティファクトの明確な自然言語説明を提供する。
FakeClueは、7つのカテゴリにわたる10万以上の画像を含む包括的データセットで、自然言語のきめ細かいアーティファクトのヒントで注釈付けされている。
論文 参考訳(メタデータ) (2025-03-19T05:14:44Z) - SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model [48.547599530927926]
ソーシャルメディア上で共有される合成画像は、広範囲の聴衆を誤解させ、デジタルコンテンツに対する信頼を損なう可能性がある。
ソーシャルメディア画像検出データセット(SID-Set)を紹介する。
本稿では,SIDA という画像深度検出,局所化,説明の枠組みを提案する。
論文 参考訳(メタデータ) (2024-12-05T16:12:25Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Fill-Up: Balancing Long-Tailed Data with Generative Models [11.91669614267993]
本論文では,テクスチュアル・インバージョンを用いた長期状況のための画像合成パイプラインを提案する。
テキスト反転されたテキストトークンから生成された画像は、実領域と効果的に一致していることを示す。
また,不均衡データを合成画像で埋め込むことにより,実世界のデータ不均衡のシナリオを緩和できることを示す。
論文 参考訳(メタデータ) (2023-06-12T16:01:20Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Are GAN generated images easy to detect? A critical analysis of the
state-of-the-art [22.836654317217324]
フォトリアリズムのレベルが高まるにつれて、合成媒体は実物とほとんど区別できないようになっている。
合成媒体を安定かつタイムリーに検出する自動ツールを開発することが重要である。
論文 参考訳(メタデータ) (2021-04-06T15:54:26Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
本稿では,ターゲットドメインからの実際の画像を必要としない新しいデータベース生成手法と,(ii)交通標識のテンプレートを提案する。
この方法は、実際のデータでトレーニングを克服することではなく、実際のデータが利用できない場合に互換性のある代替手段になることを目的としている。
大規模なデータセットでは、完全に合成されたデータセットによるトレーニングは、実際のデータセットとトレーニングのパフォーマンスにほぼ一致する。
論文 参考訳(メタデータ) (2020-07-30T21:06:47Z) - Detecting CNN-Generated Facial Images in Real-World Scenarios [15.755089410308647]
本研究では,実環境下での検出手法を評価するためのフレームワークを提案する。
また,提案フレームワークを用いた最先端検出手法の評価を行った。
この結果から,CNNに基づく検出手法は実世界のシナリオで使用するには不十分であることが示唆された。
論文 参考訳(メタデータ) (2020-05-12T09:18:28Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。