Occlusion-aware Driver Monitoring System using the Driver Monitoring Dataset
- URL: http://arxiv.org/abs/2504.20677v1
- Date: Tue, 29 Apr 2025 11:58:37 GMT
- Title: Occlusion-aware Driver Monitoring System using the Driver Monitoring Dataset
- Authors: Paola Natalia Cañas, Alexander Diez, David Galvañ, Marcos Nieto, Igor Rodríguez,
- Abstract summary: This paper presents a robust driver monitoring system (DMS) utilizing the Driver Monitoring dataset (DMD)<n>The system performs driver identification, gaze estimation by regions, and face occlusion detection under varying lighting conditions, including challenging low-light scenarios.<n>We detail the development and integration of these algorithms into a cohesive pipeline, addressing the challenges of working with different sensors and real-car implementation.
- Score: 42.27703025887059
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a robust, occlusion-aware driver monitoring system (DMS) utilizing the Driver Monitoring Dataset (DMD). The system performs driver identification, gaze estimation by regions, and face occlusion detection under varying lighting conditions, including challenging low-light scenarios. Aligned with EuroNCAP recommendations, the inclusion of occlusion detection enhances situational awareness and system trustworthiness by indicating when the system's performance may be degraded. The system employs separate algorithms trained on RGB and infrared (IR) images to ensure reliable functioning. We detail the development and integration of these algorithms into a cohesive pipeline, addressing the challenges of working with different sensors and real-car implementation. Evaluation on the DMD and in real-world scenarios demonstrates the effectiveness of the proposed system, highlighting the superior performance of RGB-based models and the pioneering contribution of robust occlusion detection in DMS.
Related papers
- Multi-modal Multi-platform Person Re-Identification: Benchmark and Method [58.59888754340054]
MP-ReID is a novel dataset designed specifically for multi-modality and multi-platform ReID.<n>This benchmark compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging.<n>We introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios.
arXiv Detail & Related papers (2025-03-21T12:27:49Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Monitoring of Perception Systems: Deterministic, Probabilistic, and
Learning-based Fault Detection and Identification [21.25149064251918]
We formalize the problem of runtime fault detection and identification in perception systems.
We provide a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to perform fault detection and identification.
We conclude the paper with an experimental evaluation, which recreates several realistic failure modes in the LGSVL open-source autonomous driving simulator.
arXiv Detail & Related papers (2022-05-22T19:08:45Z) - Does Thermal data make the detection systems more reliable? [1.2891210250935146]
We propose a comprehensive detection system based on a multimodal-collaborative framework.
This framework learns from both RGB (from visual cameras) and thermal (from Infrared cameras) data.
Our empirical results show that while the improvement in accuracy is nominal, the value lies in challenging and extremely difficult edge cases.
arXiv Detail & Related papers (2021-11-09T15:04:34Z) - RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced
Passenger Safety [3.4298729855744026]
This paper proposes a flexible analysis scheme to detect and track humans on a ground plane.
We consider multiple combinations within a set of RGB- and depth-based detection and tracking modalities.
Results indicate that the combined use of depth-based spatial information and learned representations yields substantially enhanced detection and tracking accuracies.
arXiv Detail & Related papers (2021-02-23T14:44:34Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
We propose a mathematical model for runtime monitoring and fault detection and identification in perception systems.
We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack.
arXiv Detail & Related papers (2020-11-11T23:03:14Z) - DMD: A Large-Scale Multi-Modal Driver Monitoring Dataset for Attention
and Alertness Analysis [54.198237164152786]
Vision is the richest and most cost-effective technology for Driver Monitoring Systems (DMS)
The lack of sufficiently large and comprehensive datasets is currently a bottleneck for the progress of DMS development.
In this paper, we introduce the Driver Monitoring dataset (DMD), an extensive dataset which includes real and simulated driving scenarios.
arXiv Detail & Related papers (2020-08-27T12:33:54Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars.
Despite the paramount importance of perception systems, there is no formal approach for system-level monitoring.
We propose a mathematical model for runtime monitoring and fault detection of perception systems.
arXiv Detail & Related papers (2020-05-24T18:09:46Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.