論文の概要: Intelligent Task Offloading in VANETs: A Hybrid AI-Driven Approach for Low-Latency and Energy Efficiency
- arxiv url: http://arxiv.org/abs/2504.20735v1
- Date: Tue, 29 Apr 2025 13:20:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.901592
- Title: Intelligent Task Offloading in VANETs: A Hybrid AI-Driven Approach for Low-Latency and Energy Efficiency
- Title(参考訳): VANETにおけるインテリジェントタスクオフロード - 低レイテンシとエネルギー効率のためのハイブリッドAI駆動アプローチ
- Authors: Tariq Qayyum, Asadullah Tariq, Muhammad Ali, Mohamed Adel Serhani, Zouheir Trabelsi, Maite López-Sánchez,
- Abstract要約: Vehicular Ad-hoc Networks (VANETs) はインテリジェントトランスポートシステムに不可欠なネットワークである。
VANETは、車両が計算タスクを近くのロードサイドユニット(RSU)とリアルタイム処理のためにモバイルエッジコンピューティング(MEC)サーバーにオフロードすることを可能にする。
本研究は、インテリジェントタスクオフロードとリソースアロケーションのための教師付き学習、強化学習、パーティクルスワーム最適化(PSO)を統合したハイブリッドAIフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.1877558143992184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicular Ad-hoc Networks (VANETs) are integral to intelligent transportation systems, enabling vehicles to offload computational tasks to nearby roadside units (RSUs) and mobile edge computing (MEC) servers for real-time processing. However, the highly dynamic nature of VANETs introduces challenges, such as unpredictable network conditions, high latency, energy inefficiency, and task failure. This research addresses these issues by proposing a hybrid AI framework that integrates supervised learning, reinforcement learning, and Particle Swarm Optimization (PSO) for intelligent task offloading and resource allocation. The framework leverages supervised models for predicting optimal offloading strategies, reinforcement learning for adaptive decision-making, and PSO for optimizing latency and energy consumption. Extensive simulations demonstrate that the proposed framework achieves significant reductions in latency and energy usage while improving task success rates and network throughput. By offering an efficient, and scalable solution, this framework sets the foundation for enhancing real-time applications in dynamic vehicular environments.
- Abstract(参考訳): Vehicular Ad-hoc Networks (VANETs) はインテリジェントトランスポートシステムに不可欠なシステムであり、車両は計算タスクを近くのロードサイドユニット(RSU)とリアルタイム処理のためのモバイルエッジコンピューティング(MEC)サーバにオフロードすることができる。
しかし、VANETの非常にダイナミックな性質は、予測不能なネットワーク条件、高いレイテンシ、エネルギ不効率、タスク障害などの課題をもたらす。
本研究は、インテリジェントタスクオフロードとリソースアロケーションのための教師付き学習、強化学習、パーティクルスワーム最適化(PSO)を統合したハイブリッドAIフレームワークを提案することにより、これらの課題に対処する。
このフレームワークは、最適オフロード戦略予測のための教師付きモデル、適応的な意思決定のための強化学習、レイテンシとエネルギー消費の最適化のためのPSOを活用する。
大規模なシミュレーションにより,提案フレームワークは,タスク成功率とネットワークスループットを改善しつつ,レイテンシとエネルギー使用量の大幅な削減を実現することが示された。
効率的でスケーラブルなソリューションを提供することで、このフレームワークは動的車両環境におけるリアルタイムアプリケーションを強化する基盤となる。
関連論文リスト
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
適応的,リアルタイムな意思決定を通じて計算オフロードを最適化するために,強化学習(RL)と深層強化学習(DRL)フレームワークの可能性を検討する。
本稿では,車載ネットワークにおけるDRLの理解と適用を促進することを目的とした,標準化された学習モデル,最適化された報酬構造,協調型マルチエージェントシステムなどの重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-10T19:02:20Z) - Reinforcement Learning Controlled Adaptive PSO for Task Offloading in IIoT Edge Computing [0.0]
産業用IoT(Industrial Internet of Things)アプリケーションは、低レイテンシで重いデータ負荷を処理するために、効率的なタスクオフロードを要求する。
モバイルエッジコンピューティング(MEC)は、レイテンシとサーバ負荷を低減するために、デバイスに計算を近づける。
本稿では,適応粒子群最適化(APSO)と強化学習,特にソフトアクタ批判(SAC)を組み合わせた新しい解を提案する。
論文 参考訳(メタデータ) (2025-01-25T13:01:54Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
リソース割り当て、タスクオフロード、セキュリティ、パフォーマンスのバランスをとるフレームワークであるSARMTOを紹介します。
SARMTOは5つのベースラインアプローチを一貫して上回り、最大40%のシステムコスト削減を実現している。
これらの拡張は、複雑な分散コンピューティング環境におけるリソース管理に革命をもたらすSARMTOの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-20T15:52:43Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - PeersimGym: An Environment for Solving the Task Offloading Problem with Reinforcement Learning [2.0249250133493195]
計算ネットワークにおけるタスクオフロード戦略の開発と最適化に適した,オープンソースのカスタマイズ可能なシミュレーション環境であるPeersimGymを紹介する。
PeersimGymは、幅広いネットワークトポロジと計算制約をサポートし、TextitPettingZooベースのインターフェイスを統合して、RLエージェントのデプロイを、単体とマルチエージェントの両方で行えるようにしている。
本稿では,分散コンピューティング環境におけるオフロード戦略を大幅に強化するRLベースのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-03-26T12:12:44Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
我々は,IOPO(Iterative Order-Preserving Policy Optimization)と呼ばれるディープラーニングに基づく最適化フレームワークを提案する。
IOPOはエネルギー効率のよいタスクオフロード決定をミリ秒で生成できる。
実験の結果,提案フレームワークは短時間でエネルギー効率の高いタスクオフロード決定を生成できることがわかった。
論文 参考訳(メタデータ) (2023-07-17T13:32:02Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
電気自動車(EV)は配電ネットワークを著しくストレスし、性能を劣化させ、安定性を損なう可能性がある。
現代の電力網は、EV充電スケジューリングをスケーラブルで効率的な方法で最適化できる、コーディネートまたはスマートな充電戦略を必要とする。
ネットワークの利用可能な電力容量とステーションの占有限度を考慮しつつ、EV利用者の総福祉利益を最大化する時間結合二元最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-05-18T14:03:47Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。