RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces
- URL: http://arxiv.org/abs/2504.20792v1
- Date: Tue, 29 Apr 2025 14:09:20 GMT
- Title: RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces
- Authors: Santiago de Leon-Martinez, Jingwei Kang, Robert Moro, Maarten de Rijke, Branislav Kveton, Harrie Oosterhuis, Maria Bielikova,
- Abstract summary: We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels.<n>The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user.<n>We provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior.
- Score: 58.695627866883065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Carousel interfaces are widely used in e-commerce and streaming services, but little research has been devoted to them. Previous studies of interfaces for presenting search and recommendation results have focused on single ranked lists, but it appears their results cannot be extrapolated to carousels due to the added complexity. Eye tracking is a highly informative approach to understanding how users click, yet there are no eye tracking studies concerning carousels. There are very few interaction datasets on recommenders with carousel interfaces and none that contain gaze data. We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels that includes eye tracking results, clicks, cursor movements, and selection explanations. The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user. In total, 87 users and 3,477 interactions are logged. In addition to the dataset, its description and possible use cases, we provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior. Our work seeks to advance the field of carousel interfaces by providing the first dataset with eye tracking results on carousels. In this manner, we provide and encourage an empirical understanding of interactions with carousel interfaces, for building better recommender systems through gaze information, and also encourage the development of gaze-based recommenders.
Related papers
- EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs [0.0]
We propose a new attention mechanism to take advantage of real-valued interaction weights as well as user and item features directly.
We train a novel Graph Diffusion Transformer GDiT architecture to iteratively denoise the weighted interaction matrix of the user-item interaction graph directly.
Inspired by the recent progress in text-conditioned image generation, our method directly produces user-item rating predictions on the same scale as the original ratings.
arXiv Detail & Related papers (2024-09-23T03:23:20Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Triangle Graph Interest Network for Click-through Rate Prediction [10.442084155281178]
We propose a novel framework named Triangle Graph Interest Network (TGIN) for click-through rate prediction.
For each clicked item in user behavior sequences, we introduce the triangles in its neighborhood of the item-item graphs as a supplement.
We characterize every click behavior by aggregating the information of several interest units to alleviate the elusive motivation problem.
arXiv Detail & Related papers (2022-02-06T03:48:52Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Measuring the User Satisfaction in a Recommendation Interface with
Multiple Carousels [7.8851236034886645]
It is common for video-on-demand and music streaming services to adopt a user interface composed of several recommendation lists.
We propose a two-dimensional evaluation protocol for a carousel setting that will measure the quality of a recommendation carousel.
arXiv Detail & Related papers (2021-05-14T20:33:51Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z) - BasConv: Aggregating Heterogeneous Interactions for Basket
Recommendation with Graph Convolutional Neural Network [64.73281115977576]
Within-basket recommendation reduces the exploration time of users, where the user's intention of the basket matters.
We propose a new framework named textbfBasConv, which is based on the graph convolutional neural network.
Our BasConv model has three types of aggregators specifically designed for three types of nodes.
arXiv Detail & Related papers (2020-01-14T16:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.