Universal language model with the intervention of quantum theory
- URL: http://arxiv.org/abs/2504.20839v1
- Date: Tue, 29 Apr 2025 15:02:30 GMT
- Title: Universal language model with the intervention of quantum theory
- Authors: D. -F. Qin,
- Abstract summary: The paper focuses on the introduction of quantum mechanics into the symbol-meaning pairs of language.<n>It is realized that word embedding, which is widely used as a basic technique for statistical language modeling, can be explained and improved by the mathematical framework of quantum mechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines language modeling based on the theory of quantum mechanics. It focuses on the introduction of quantum mechanics into the symbol-meaning pairs of language in order to build a representation model of natural language. At the same time, it is realized that word embedding, which is widely used as a basic technique for statistical language modeling, can be explained and improved by the mathematical framework of quantum mechanics. On this basis, this paper continues to try to use quantum statistics and other related theories to study the mathematical representation, natural evolution and statistical properties of natural language. It is also assumed that the source of such quantum properties is the physicality of information. The feasibility of using quantum theory to model natural language is pointed out through the construction of a experimental code. The paper discusses, in terms of applications, the possible help of the theory in constructing generative models that are popular nowadays. A preliminary discussion of future applications of the theory to quantum computers is also presented.
Related papers
- Time-Irreversible Quantum-Classical Dynamics of Molecular Models in the Brain [36.136619420474766]
This manuscript aims to illustrate a quantum-classical dissipative theory within the long-term project of studying molecular processes in the brain.<n>The theory must be dissipative not because of formal requirements but because brain processes appear to be dissipative at the molecular, physiological, and high functional levels.
arXiv Detail & Related papers (2025-02-18T00:12:12Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Stochastic Processes: From Classical to Quantum [7.034466417392574]
We start with some reminders from the theory of classical processes.
We then provide a brief overview of quantum mechanics and quantum field theory.
We introduce quantum processes on a boson Fock space and their calculus.
arXiv Detail & Related papers (2024-07-04T15:26:35Z) - Quantum influences and event relativity [0.0]
We develop a new interpretation of quantum theory by combining insights from Wigner's friend scenarios and quantum causal modelling.
We articulate these ideas using a precise mathematical formalism.
arXiv Detail & Related papers (2024-01-31T17:08:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Open systems, quantum probability and logic for quantum-like modeling in
biology, cognition, and decision making [0.0]
The aim of this review is to highlight the possibility to apply the mathematical formalism and methodology of quantum theory to model behaviour of complex biosystems.
Such models are known as quantum-like and they should be distinguished from genuine quantum physical modeling of biological phenomena.
arXiv Detail & Related papers (2023-04-17T20:26:19Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Resource theory of imaginarity: Quantification and state conversion [48.7576911714538]
Resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory.
We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory.
Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
arXiv Detail & Related papers (2021-03-02T15:30:27Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP)
We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure.
We provide references for supporting empirical evidence and formal statements concerning mathematical generality.
arXiv Detail & Related papers (2020-12-07T14:49:33Z) - Functoriality of Quantum Resource Theory and Variable-Domain Modal Logic [0.0]
I show that quantum resource theories may be functorially translated into models of variable-domain S4 modal logic.
I then extend this functorial relationship to an injective one by adding structure to these logical models.
arXiv Detail & Related papers (2020-06-29T20:11:32Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.